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Pure-strategy Nash equilibria in large games:

Characterization and Existence1

Haifeng Fu2, Ying Xu3, Luyi Zhang4

Abstract

We present three characterization results for pure-strategy Nash equilibria

in three different settings of large games, as well as a counterexample show-

ing the failure of this characterization framework in another setting. We

then show the existence of the characterizing counterpart for the equilibria,

which subsequently enables us to obtain the existence of pure-strategy Nash

equilibria in three settings of large games.

Key words: Large games; pure-strategy Nash equilibrium; characterization;

existence; atomless probability space; saturated probability space

1. Introduction

A large game models its agent space with an atomless probability space,

which captures the predominant characteristic in a large conflicting economy

where a single player is negligible but a group of players is influential. Over

the past few decades, research on large games has been fruitful. Various

results on the existence or nonexistence of the pure or mix-strategy Nash

1The authors are grateful to Yeneng Sun and Haomiao Yu for stimulating conversa-
tion and correspondence. This paper was presented at the 2013 Asian Meeting of the
Econometric Society, Singapore, August 2-4, 2013: we thank the participants for their
constructive comments.
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3Department of Mathematics, National University of Singapore, Singapore.
4Department of Mathematics, National University of Singapore, Singapore.
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equilibria are determined in different settings or frameworks of large games.5

However, most studies on large games focus on showing the existence or

nonexistence of Nash equilibria but very few of them pay attention to char-

acterizing the equilibria, which, in our point of view, is certainly a loss in the

literature. As we can see from this paper, not only can a good characterisa-

tion result help us explain the equilibria from another perspective and hence

enhance our understanding of them, but it can also provide an alternative

and even easier way to show the existence of the equilibria.

We start by considering a generalized large game where the agent space is

divided into countable (finite or countably infinite) different subgroups and

each player’s payoff depends on her own action and the action distribution

in each of the subgroups.6 In such a large game, a pure-strategy action

profile that assigns an action to each player is called a (pure-strategy) Nash

equilibrium if no player has the incentive to deviate from her assigned action.

A (pure-strategy) equilibrium distribution is a distribution on the action space

that is induced by a pure-strategy Nash equilibrium.

If such a large games is further restricted by having either a countable

action space or a countable payoff space or a saturated probability space of

agents, then a given distribution on the action space is shown to be an

equilibrium distribution if and only if for any Borel [closed or open (or finite)]

subset of actions the players in each subgroup playing actions in it are no

more than the players having a best response in the set. We also show

through a counterexample that if both actions and payoffs are uncountable

and the agent space is a general probability space, say the Lebesgue unit

interval, then a similar characterization result is not valid.

Following these characterization results, we proceed to show the existence

of the characterizing distribution for the equilibrium. Our result (Theorem

5Interested readers can refer to Khan and Sun (1999, 2002); Kalai (2004) for a few

existing literatures and Khan et al. (2012) for a new development.
6The large game discussed here is a generalization to the large non-anonymous games

discussed in Khan and Sun (1999, 2002).
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5) reveals that the characterizing distributions do exist and they exist in a

much more general framework than the equilibria do. In particular, there

is no need to impose any further restrictions on the agent, action or pay-

off space other than the regular conditions that define a large game. This

result, together with the previous characterization results, leads to the exis-

tence of pure strategy Nash equilibria in three settings of large games under

countability or saturation assumption. These existence results generalize or

parallel the corresponding results in Khan and Sun (1995, 1999) and also in-

clude a new situation showing the existence of pure strategy Nash equilibria

in large games endowed with at most countably many different payoffs while

dropping any countability or saturation restrictions on the agent or action

space.

Throughout the paper, we present quite a few results on the characteri-

zation or existence of pure-strategy equilibria in large games. However our

paper is not tedious and our proofs are mostly elementary. This can be seen

as another advantage of considering the existence of pure strategy equilibri-

um via its characterization.7

The paper is organized as follows. Section 2 introduces the game mod-

el. Section 3 presents all the characterization results. Section 4 shows the

existence of the characterizing equilibrium and hence also the pure strategy

equilibrium. Section 5 contains some concluding remarks.

2. Large game model

Let (T,T , λ) be an atomless probability space of players and I a count-

able (finite or countably infinite) index set. Let (Ti)i∈I be a measurable

partition of T with positive λ-measures (αi)i∈I , i.e., αi = λ(Ti) > 0 for all

7The proof of our first result uses Bollobas and Varopoulos (1975)’s extension of the

famous marriage theorem (or the Hall’s theorem) and the proof of the third result relies

on Keisler and Sun (2009)’s result on the distributional properties of correspondence on

saturated probability spaces.
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i ∈ I. For each i ∈ I, let λi := λ|Ti be the restricted probability measure

of λ on Ti in the sense that λi is a probability measure on the measurable

space (Ti,Ti) where Ti := {S ∩ Ti : S ∈ T } such that for any set B ∈ Ti,

λi(B) = λ(B)/αi. By introducing this partition, we imply that the players

are divided into I groups.

Let the action space, denoted by A, of the game be a Polish space with

B(A) its Borel σ-algebra and M (A) the set of all Borel probability measures

on A. Suppose that all the players in each group i ∈ I choose their actions

from a common compact subset Ai of A. Without loss of generality, we

assume that (Ai)i∈I are disjoint of each other.8 For ease of notation, we define

an action correspondence K : T � A for all players such that K(t) = Ai

for all t ∈ Ti. Let M (Ai) be the set of all Borel probability measures on Ai

endowed with the topology of weak convergence of probability measures and∏
i∈I M (Ai) the usual product space endowed with the product topology. For

ease of notation, we let Θ := A×
∏

i∈I M (Ai) and Θi := Ai ×
∏

i∈I M (Ai),

i ∈ I. 9

The payoff function (or simply, payoff ) of each player depends on her

own action as well as on the distribution of actions played by the players in

each of the groups. Mathematically, we let the space of payoffs be the space

of all continuous real-valued functions on Θ, denoted by C(Θ), endowed with

the topology of compact convergence.

Definition 1.

A large game is a measurable mapping U from T to C(Θ).10 A measurable

function f : T → A is called a pure-strategy profile if f(t) ∈ K(t) for all

8If initially, (Ai)i∈I are not disjoint, we can always introduce a disjoint set of action sets

(A′i)i∈I by adding an index dimension to the original action sets while keeping the same

topological structure. For example, if A1 = A2 = {a, b}, we can let A′1 = {(1, a), (1, b)}
and A′2 = {(2, a), (2, b)}.

9Unless otherwise specified, any topological space discussed in this paper is tacitly

understood to be equipped with its Borel σ-algebra, i.e., the σ-algebra generated by the

family of open sets, and the measurability is defined in terms of it.
10Such a large game is often called large non-anonymous game in the literature. See,
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t ∈ T . A pure-strategy profile f is called a pure-strategy (Nash) equilibrium

if for λ-almost all t ∈ T ,

U(t)[f(t), (λif
−1
i )i∈I ] ≥ U(t)[a, (λif

−1
i )i∈I ] for all a ∈ K(t),

where fi is the restriction of f to Ti. A distribution µ ∈ M (A) is called

an equilibrium distribution if there exists a pure-strategy equilibrium f such

that µ = λf−1.

Given a pure-strategy profile f : T → A and its induced distribution

µ := λf−1, let fi be the restribution of f to Ti and µi := µ|Ai
the restricted

probability measure of µ on Ai. Since (Ai)i∈I are disjoint sets, f−1
i (B) =

f−1(B) for all B ∈ Ai and hence for any B ∈ B(Ai), µi(B) = µ(B)
µ(Ai)

=

λf−1(B)
λf−1(Ai)

=
λf−1

i (B)

λf−1
i (Ai)

=
λf−1

i (B)

λ(Ti)
= λif

−1
i (B). Thus we have µi = λif

−1
i for all

i ∈ I.

Recall that a correspondence F from T to A, denoted by F : T � A, is

called measurable if for each closed subset C of A, the set

F−1(C) := {t ∈ T : F (t) ∩ C 6= ∅}

is measurable in T . A function f from T to A is said to be a measurable

selection of F if f is measurable and f(t) ∈ F (t) for all t ∈ T . When F

is measurable and closed valued, the classical Kuratowski-Ryll-Nardzewski

Theorem (see, eg, Aliprantis and Border (1999, p.567)) shows that F has a

measurable selection.

Given an arbitrary probability measure µ ∈M (A), the best responses of

player t facing the collective behavior µ is given by

Bµ(t) := arg max
a∈K(t)

U(t)(a, (µi)i∈I),

where and µi is the restricted probability measure of µ on Ai. By the Mea-

surable Maximum Theorem in Aliprantis and Border (1999, p.570), Bµ is a

eg, Khan and Sun (2002).
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measurable correspondence from T to A, has nonempty compact values and

admits a measurable selection. Let Bµ
i : Ti � Ai be the restriction of Bµ to

Ti.

3. Characterizing large game

Unless otherwise specified, throughout this section, we follow all the no-

tations defined in last section.

3.1. Large games with countable actions

Our first result is on large games with countable actions.

Theorem 1. Let µ ∈ M (A) and µi = µ|Ai
for all i ∈ I. If the action

space A in the large game U is countable, then the following statements are

equivalent:

(i) µ is an equilibrium distribution;

(ii) for each i ∈ I, µi(C) ≤ λi[(B
µ
i )−1(C)] for every subset C in Ai;

(iii) for each i ∈ I, µi(D) ≤ λi[(B
µ
i )−1(D)] for every finite subset D in Ai.

To prove this theorem, we need the following lemma from Khan and Sun

(1995), which is a special case of the famous marriage theorem offered by

Bollobas and Varopoulos (1975).11

Lemma 1. (Khan and Sun, 1995, Theorem 4)12 Let (T, T , λ) be an atomless

probability space, I a countable index set, (Ti)i∈I a family of sets in T , and

(αi)i∈I a family of non-negative numbers. Then the following two statements

are equivalent

11This lemma was also used by Yu and Zhang (2007) to show the existence of pure

strategy in games with countable actions.
12Throughout the paper, we reference results previously available in the literature as

“Lemma”.
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• λ(
⋃
i∈D Ti) ≥

∑
i∈D αi for all finite subsets D of I;

• there is a family of sets, (Si)i∈I , in T such that for all i, j ∈ I, i 6= j,

one has Si ⊆ Ti, λ(Si) = αi and Si ∩ Sj = ∅.

Proof of Theorem 1. (i)⇒(ii): Let µ be an equilibrium distribution. Then by

definition, there exists a Nash equilibrium f : T → A such that µ = λf−1.

Notice that for each i ∈ I, fi(t) ∈ Bµ
i (t) for all t ∈ Ti. Thus, for any i ∈ I

and for every C ⊆ Ai,

µi(C) = λi(f
−1
i (C)) = λi({t ∈ Ti : fi(t) ∈ C})

≤ λi({t ∈ Ti : Bµ
i (t) ∩ C 6= ∅}) = λi[(B

µ
i )−1(C)].

(ii) ⇒ (iii): Obvious.

(iii)⇒(i): Suppose (iii) holds. Fix an arbitrary i ∈ I. Since A is a

countable set, it can be written as A := {a1, a2, · · · } = {aj}j∈N. For each

j ∈ N, let βj := µi({aj}) and T ji := (Bµ
i )−1({aj}) = {t ∈ Ti : aj ∈ Bµ

i (t)}.
Let D be an arbitrary finite subset of N. Observe that (Bµ

i )−1(
⋃
j∈D{aj}) =⋃

j∈D T
j
i . Statement (iii) tells that

∑
j∈D βj = µi(

⋃
j∈D{aj}) ≤ λi(

⋃
j∈D T

j
i ).

Thus by Lemma 1, there exists a family of sets, (Sj)j∈N, such that for all

j, k ∈ N, k 6= j, one has Sj ⊆ T ji , λi(Sj) = βj and Sj ∩ Sk = ∅.
Now define a measurable function hi : Ti → A such that for all j ∈ N

and for all t ∈ Sj, hi(t) = aj. Since, for any j ∈ N, t ∈ Sj implies that aj ∈
(Bµ

i )(t), we have hi(t) ∈ Bµ
i (t) for all t ∈ T . Furthermore, λi(h

−1
i ({aj})) =

λi(Sj) = βj = µi({aj}) for all j ∈ N, which implies λih
−1
i = µi. Repeat the

above arguments for all i ∈ I and define a measurable function h : T → A by

letting h(t) = hi(t) if t ∈ Ti. Thus it is clear that h is a pure strategy Nash

equilibrium and µ = (µi)i∈N = λh−1 is the equilibrium distribution induced

by h. Q.E.D.

Remark 1. Note that µ is an equilibrium distribution if and only if there

exists a measurable selection f of Bµ such that µ = λf−1. Hence, if µ is an

equilibrium distribution, then µi(C) = λi(f
−1
i (C)) = λi{t ∈ Ti : fi(t) ∈ C},
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is simply the proportion of players playing their actions in C. Therefore, the

above theorem literally says that a distribution on the product action space

is an equilibrium distribution if and only if for any subset or any finite subset

of the actions, there are less players in each group playing their actions in

the subset than having a best response in it. It should be noted that the

case that |I| = 1 and A is finite in our theorem is the main result in Blonski

(2005).

3.2. large games with countable payoffs

In the last section, we characterize large games with a countable set of

actions. One may wander if we can allow an action space without the count-

ability restriction. The answer is yes provided that there are only countably

many payoff functions in the game, or equivalently, all the players in each

group play a common payoff function.

Definition 2. The players in a large game U is said to be homogeneous if

for each group i ∈ I, U(t) is same for all t ∈ Ti.

Since the total number of elements in a countable collection of countable

sets is still countable, this definition of homogeneity is equivalent to assuming

that in each group there are at most countably many payoff functions for its

players.

Theorem 2. Let µ ∈M (A) and µi = µ|Ai
for all i ∈ I. If the players in the

large game U is homogeneous, then the following statements are equivalent:

(i) µ is an equilibrium distribution;

(ii) for each i ∈ I, µi(C) ≤ λi[(B
µ
i )−1(C)] for every Borel subset C in Ai;

(iii) for each i ∈ I, µi(D) ≤ λi[(B
µ
i )−1(D)] for every closed subset D in Ai;

(iv) for each i ∈ I, µi(O) ≤ λi[(B
µ
i )−1(O)] for every open subset O in Ai.

To prove this theorem, we firstly introduce the following well known lem-

ma which can be obtained by appropriately adjusting the proof of Theorem

3.11 in Skorokhod (1956).
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Lemma 2. (Skorokhod, 1956, Theorem 3.11) Let (T, T , λ) be an atomless

probability space and A a Polish space. Then for any ν ∈M (A) there exists

a measurable function f : T → A such that λf−1 = ν.

Proof of Theorem 2. Firstly, we want to make sure that for each i ∈ I and

every C ∈ B(Ai), (Bµ
i )−1(C) is measurable. To see this, fix any i ∈ I. The

homogeneous condition, i.e., U(t) is fixed for all t ∈ Ti, implies that Bµ
i (t) is

same for all t ∈ Ti. Thus we can let Ci := Bµ
i (t) for all t ∈ Ti. Then, for any

C ∈ B(Ai), we have

(Bµ
i )−1(C) = {t ∈ Ti : Bµ

i (t) ∩ C 6= ∅} =

{
Ti if Ci ∩ C 6= ∅;
∅ otherwise,

which is measurable.

(i)⇒(ii): Suppose µ is now an equilibrium distribution. By assumption,

there exists a Nash equilibrium f : T → A such that µ = (λif
−1
i )i∈I and

f(t) ∈ Bµ(t) for all t ∈ T . Therefore, for any C ∈ B(Ai),

µi(C) = (λif
−1
i )(C) = λi({t ∈ Ti : fi(t) ∈ C})

≤ λi({t ∈ Ti : Bµ
i (t) ∩ C 6= ∅})

= λi[(B
µ
i )−1(C)].

It is clear that (ii) ⇒ (iii).

(iii) ⇒ (iv): Let O be an open set in Ai. Then there is an increasing se-

quence {Fn}∞n=1 of closed sets in Ai such that O =
∞⋃
n=1

Fn. For each n, we have

(Bµ
i )−1(Fn) ⊆ (Bµ

i )−1(O), which implies that µi(Fn) ≤ λi[(B
µ
i )−1(Fn)] ≤

λi[(B
µ
i )−1(O)]. Thus, µi(O) ≤ λi[(B

µ
i )−1(O)].

It remains to show (iv) ⇒ (i).

Recall that for all i ∈ I, the set Ci := Bµ
i (t) for any t ∈ Ti is compact

and hence also complete and separable. Fix any i ∈ N. By the fact that the

set (Ai − Ci) is open, we have that

1− µi(Ci) = µi(Ai − Ci) ≤ λi[(B
µ
i )−1(Ai − Ci)] = 0, (1)

9



which gives µi(Ci) = 1 for all i. Therefore, by Lemma 2, there exists a

measurable function fi : Ti → Ci such that µi = λifi
−1. By definition,

fi ∈ Bµ
i .

Define f : T → A by letting f(t) = fi(t) for all t ∈ Ti and all i ∈ I.

Thus f is a measurable selection of Bµ and µ = (µi)i∈I = (λif
−1
i )i∈I is an

equilibrium distribution.

Q.E.D.

3.3. Large games without countability restrictions

Now one may ask: is there a similar characterization result for a large

game in the plain form defined in Section 2? Our next result says no to

this question by showing that our characterization result doesn’t work for

a large game endowed with uncountable actions, uncountable payoffs and a

Lebesgue measure space of agents.

Theorem 3. Let µ ∈M (A) and µi = µ|Ai
for all i ∈ I. There exists a large

game U such that the following statements are not equivalent:

(i) µ is an equilibrium distribution of U ;

(ii) for each i ∈ I, µi(C) ≤ λi[(B
µ
i )−1(C)] for every Borel subset C in Ai;

To show this result, we need only to give one countable example.

Example 1. Consider a large game U given as follows. Let the space of

players be the Lebesgue unit interval T = [0, 1] endowed with its Boral σ-

algrbra and the Lebesgue measure λ. Let the action space A be the interval

[−1, 1] and the payoffs given by U(t)(a, µ) = −|t− |a||13 where t ∈ T , a ∈ A
and µ ∈M (A).

Let η be the uniform distribution on [−1, 1]. Thus, given η, the best

response set for player t is:

Bη(t) = arg max
a∈[−1,1]

U(t)(a, η) = {t,−t}.

13This payoff function is similar to a payoff function used in Khan et al. (1997).
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Let C be an arbitrary Borel subset in A and let C1 = C ∩ (0, 1] and

C2 = C ∩ [−1, 0]. Then

λ[(Bη)−1(C)] = λ({t ∈ T : Bη(t) ∩ C 6= ∅})
= λ{t ∈ T : t ∈ C1 or − t ∈ C2}
≥ max{λ(C1), λ(C2)}

≥ λ(C1) + λ(C2)

2
.

Since η is the uniform distribution on [−1, 1], η(C) = λ(C)
2

= λ(C1
⋃
C2)

2
=

λ(C1)+λ(C2)
2

. Therefore, we have

λ[(Bη)−1(C)] ≥ η(C).

Now we shall prove by contradiction that η can not be an equilibrium

distribution.

Suppose η is an equilibrium distribution. Then, by definition, there exists

a measurable selection f of Bη such that λf−1 = η and f(t) ∈ Bη(t) for all

t ∈ T . Let D = f−1((0, 1]). Then

f(t) =

{
t, t ∈ D
−t, t /∈ D.

Note that f−1(D) = {t : f(t) ∈ D} = {t : t ∈ D} = D. Hence, λ(D) =

λf−1(D) = η(D) = λ(D)
2

, which is a contradiction. Therefore, η cannot be

an equilibrium distribution. �

3.4. Large games with agent space being a saturated probability space

Although a general characterization result for equilibria in large games

in its plain setting fails to hold as we have seen from last section, we notice

that if we assume the agent space to be a saturated probability space, then

we can still have a similar characterization result. This result follows easily

from the work of Sun (1996) and Keisler and Sun (2009).

To introduce the concept of a saturated probability space, we first recall

that a probability space is said to be countably-generated if its σ-algebra can

be generated by countably many sets; otherwise it is not countably-generated.

11



Definition 3. A probability space (T,T , λ) is said to be saturated if it

is nowhere countably-generated, in the sense that, for any subset C ∈ T

with λ(C) > 0, the restricted probability space (C,TC , λC) is not countably-

generated, where TC := {C∩C ′ : C ′ ∈ T } and λC is the probability measure

derived from the restriction of λ to TC .

Or equivalently,

Definition 4. A probability space (T,T , λ) is saturated if it is atomless and

for every Borel probability measure ν on the product of Polish spaces X×Y
if for every measurable mapping f : T → X which induces the distribution

as the marginal measure of ν over X, then there is a measurable mapping

g : T → Y such that the induced distribution of the pair (f, g) on (T,T , λ)

is ν.14

Note that in our Example 1, the Lebesgue unit interval [0, 1] endowed

with its σ-algebra of Lebesgue measurable sets and the Lebesgue measure, is

a countably-generated probability space, and hence not saturated.

Theorem 4. If the agent space (T,T , λ) of the large game U is a saturated

probability space, then Theorem 2 still holds if we discard the homogeneous

assumption.

To prove the above theorem, we shall refer to the following lemma which

is analogous to Proposition 3.5 of Sun (1996)

Lemma 3. Let F be a closed valued measurable correspondence from a satu-

rated probability space (Ω,F , P ) to a Polish space X. Let ν be a Borel prob-

ability measure on X. Then the following statements are equivalent:

(i) there is a measurable selection f of F such that Pf−1 = ν;

(ii) for every Borel set C in X, ν(C) ≤ P (F−1(C));

14See Keisler and Sun (2009) or Khan et al. (2012) for a discussion on the equivalence

of the two definitions.
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(iii) for every closed set D in X, ν(D) ≤ P (F−1(D));

(iv) for every open set O in X, ν(O) ≤ P (F−1(O)).

Proof. This lemma is analogous to Proposition 3.5 of Sun (1996). It follows

easily by combining (Keisler and Sun, 2009, P3, Theorem 3.6) and (Keisler

and Sun, 2009, Proposition 3.5). Q.E.D.

Proof of Theorem 4. For any i ∈ I, notice that Bµ
i is a compact valued

(and hence closed valued) measurable correspondence from an atomless Loeb

probability space (Ti,Ti, λi) to the Polish space A. Thus, by applying Lemma

3 to Bµ
i , we see that µi = λif

−1
i for some fi being a measurable selection

of Bµ
i if and only if for every Borel (closed, or open) set H in Ai, µi(H) ≤

λi[(B
µ
i )−1(H)].

Since the above result holds for all i ∈ I, thus µ = (µi)i∈I is an equilibrium

distribution if and only if for each i ∈ I and every Borel (closed, or open) set

H in Ai, µi(H) ≤ λi[(B
µ
i )−1(H)].

Q.E.D.

4. Existence of equilibrium in large game

The above characterization results enables to understand the equilibria

in large games from another perspective. Moreover these characterization

results also pave us for another way to show the existence of equilibrium

distributions and hence pure-strategy profiles.

Theorem 5. There exists in every large game U a distribution µ ∈ M (A)

such that for each i ∈ I,

µi(E) ≤ λi[(B
µ
i )−1(E)] for every Borel set E in Ai.

where µi is the restricted probability measure of µ on Ai.
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Proof of Theorem 5. Let µi ∈ M(Ai) for all i ∈ I. For easy notation, we

use µ̄ to denote the distribution vector (µ1, µ2, · · · ), i.e., µ̄ := (µi)i∈I . Al-

so define Bµ̄(t) := arg maxa∈K(t) U(t)(a, (µi)i∈I), which is the best response

correspondence.

Now for each group i ∈ I, let Bµ̄
i : Ti � Ai be the restriction of Bµ̄ to

Ti and Ui : Ti → C(Θ) the restriction of U to Ti. Define Vi : Ti → C(Θi) by

letting Vi(t) = Ui(t)|Θi
, where Ui(t)|Θi

is the restriction of Ui(t) to Θi and

C(Θi) is also endowed with the topology of compact convergence. Thus, we

also have Bµ̄
i (t) = arg maxa∈Ai

Vi(t)(a, (µi)i∈I). As mentioned earlier in the

paper, each topological space is endowed with its Borel σ-algebra on which

we define the measurability.

Now we claim that Vi is also measurable. To see this, we first define Wi :

C(Θ)→ C(Θi) by lettingWi(u) = u|Θi
for all u ∈ C(Θ). Thus Vi = Wi◦Ui and

hence we only need to show that Wi is measurable. Let d be the usual metric

on R. Given an element f of C(Θi), a compact subset D of Θi and a number

ε > 0, let BΘi
(f,D, ε) = {g ∈ C(Θi) : sup{d(f(x), g(x))|x ∈ D} < ε}. Thus

the sets BΘi
(f,D, ε) form a basis for the topology of compact convergence on

C(Θi).(See, eg, p 283 in Munkres (2000)) Hence we only need to show that

W−1
i (BΘi

(f,D, ε)) is measurable. To see this, let ∆ = {u ∈ C(Θ) : u|D = f}
and note that

W−1
i (BΘi

(f,D, ε)) = {h ∈ C(Θ) : h|Θi
∈ BΘi

(f,D, ε)}
= {h ∈ C(Θ) : sup{d(f(x), h(x))|x ∈ D} < ε}
=

⋃
u∈∆

{h ∈ C(Θ) : sup{d(u(x), h(x))|x ∈ D} < ε}

=
⋃
u∈∆

BΘ(u,D, ε).

SinceBΘ(u,D, ε) is open by the definition of the topology on C(Θ), W−1
i (BΘi

(f,D, ε))

is also open and hence measurable. Thus our claim is verified.

For all i ∈ I, define Γµ̄i : C(Θi) � Ai by letting Γµ̄i (u) = arg maxa∈Ai
u(a, (µi)i∈I)

for all u ∈ C(Θi). Thus we have Bµ̄
i (t) = Γµ̄i (Vi(t)) for all t ∈ Ti. By the
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Berge’s Maximum Theorem, Γµ̄i is upper semicontinuous.15 Thus, (Γµ̄i )−1(F )

is measurable for all closed set F ∈ A.16 It is also straightforward to verify

that V −1
i [(Γµ̄i )−1(F )] = (Bµ̄

i )−1(F ) for any closed set F ∈ A. Since Vi is

measurable, λiV
−1
i is a Borel probability measure on C(Θi).

Let η̄ := (ηi)i∈I ∈
∏

i∈I M (Ai). Define Φ :
∏

i∈I M (Ai) �
∏

i∈I M (Ai)

as

Φ(µ̄) = {η̄ : ηi(E) ≤ λi[(B
µ̄
i )−1(E)] for each i ∈ I and any E ∈ B(Ai)}.

It is easy to see that Φ is nonempty,17 closed-valued and convex-valued.

Now we want to show that Φ is upper semicontinuous or, equivalently, has

a closed graph. Toward this end, we choose a sequence {(µ̄m, η̄m)}m∈N from(∏
i∈I M (Ai)×

∏
i∈I M (Ai)

)
with η̄m ∈ Φ(µ̄m) for each m and converging

to (µ̄0, η̄0). We need to show that η̄0 ∈ Φ(µ̄0).

Fix any i ∈ I. Let F be a closed subset of Ai and let Λm := (Γµ̄
m

i )−1(F )

and Λ0 := (Γµ̄
0

i )−1(F ). Since Γµ̄
0

i is upper semicontinuous and F is closed,

Λ0 is also closed. Since Θi is compact, C(Θi) is metrizable and we let d̂ be

one of the compatible metrics on C(Θi). For all k = 1, 2, . . ., let Gk = {u ∈
C(Θi) : d̂(u,Λ0)} < 1

k
}.

Fix any k. We claim that Λm ⊂ Gk for large enough m. To see this,

let um ∈ Λm, which, by the definition of Λm, implies that there is an

am ∈ F such that um(am, µ̄
m) = maxa∈Ai

um(a, µ̄m). Since µ̄m → µ̄0 and

um is uniformly continuous on Ai ×
∏

i∈I M (Ai)
18, when m is large enough

we have |um(am, µ̄
0) − maxa∈Ai

um(a, µ̄0)| < 1
k
. Thus it is straightforward

to find a continuous real function u′m ∈ C(Θi) such that u′m(am, µ̄
0) =

maxa∈Ai
u′m(a, µ̄0) = maxa∈Ai

um(a, µ̄0) and d̂(um, u
′
m) < 1

k
.19 Thus u′m ∈ Λ0

15Note that the map fµ̄ : A×U → R defined by fµ̄(a, u) = u(a, (µ̄i)i∈I) is continuous

(see Theorem 46.10 in Munkres (2000)).
16See, eg, Lemma 16.4 in Aliprantis and Border (1999).
17By the Measurable Maximum Theorem, Bµ̄i admits a measurable selection gi. Thus

η̄ = (λig
−1
i )i∈I is a trivial element of Φ(µ̄).

18Continuous real function on compact metric space is also uniformly continuous.
19Just let u′m be a little bit bigger than um around the area of am.
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and um ∈ Gk.

Hence, the above result and our hypothesis imply that η̄mi (F ) ≤ λiV
−1
i (Λm) ≤

λiV
−1
i (Gk) for large enough m. Since η̄mi (F )→ η̄0

i (F ), we have that η̄0
i (F ) ≤

λiV
−1
i (Gk). SinceGk ↓ Λ0, we have η̄0

i (F ) ≤ λiV
−1
i (Λ0) = λiV

−1
i [(Γµ̄

0

i )−1(F )] =

λi[(B
µ̄0

i )−1(F )].

Now we want to show the above result holds for all Borel set E ∈ A. To

see this, recall that every probability measure on a Polish space is regular.20

Therefore, we have

η̄0
i (E) = η̄0

i (E ∩ Ai) = sup{η̄0
i (F ) : F is closed and F ⊆ E ∩ Ai}

≤ sup{λi[(Bµ̄0

i )−1(F )] : F is closed and F ⊆ E ∩ Ai}
≤ λi[(B

µ̄0

i )−1(E ∩ Ai)] = λi[(B
µ̄0

i )−1(E)].

Since the above arguments hold for all i ∈ I, we conclude that η̄0 ∈ Φ(µ̄0).

Therefore Φ also has a closed graph, hence by the Ky Fan fixed point theorem

in Fan (1952), there is a fixed point µ̄∗ ∈ Φ(µ̄∗).

Define a probability measure µ such that µ|Ai
= µ∗i for all i ∈ I and 0

otherwise. Then µ the probability measure that we seek. Q.E.D.

Remark 2. Theorem 5 does not impose any restrictions on the agent, payoff

and/or action spaces and hence is a quite general result.

Combining Theorems 1, 2, 3, and 5 leads us to the existence of pure-

strategy equilibria in large games.

Theorem 6. If a large game U also satisfies one of the following three con-

ditions:

(a). the action space A is a countable set;

(b). all the players in each group share a common payoff;

(c). the agent space (T,T , λ) is a saturated probability space,

20See Theorem 10.7 in Aliprantis and Border (1999).

16



then there exists a pure-strategy equilibrium for the game.

Remark 3. By allowing |I| to be countably infinite and the action space A

to be Polish, our case (a) is a generalization to Theorem 10 in Khan and Sun

(1995) and Theorem 3.2 in Yu and Zhang (2007) and our case (c) strengthens

Theorem 1 in Khan and Sun (1999). Moreover, our case (b) is new.

Remark 4. The existence results in Theorem 6 are obtained easily. However,

this is not the case if we want to prove those results directly. The direct

proofs on the existence of equilibria for the three settings of large games

need to be constructed individually and each of them may well involve a lot

of effort. (see, eg, Khan and Sun (1995, 1999).)

5. Concluding remarks

We present the three characterization results in this paper which are easy

to understand. The counterexample shows that our characterization results

are actually quite sharp. These results are also served as a practical tool

to determine the pure-strategy Nash equilibria by showing the existence of

their characterizing counterparts. We also hope our method can provide

some insight to other similar circumstances in game theory or other field.
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Arbitrage Bounds on Currency Basket Options

YI HONG∗

Xi’an Jiaotong-Liverpool University

Abstract

This paper exploits arbitrage valuation bounds on currency basket options. In-

stead of using a sophisticated model to price these options, we consider a set of

pricing models that are consistent with the prices of available hedging assets. In

the absence of arbitrage, we find a pair of valuation bounds on currency basket op-

tions that represent a price range for barrier options. Our results extend the work

of Hobson, Laurence and Wang (2005a, 2005b) by seeking tight arbitrage valuation

bounds. These bounds are enforced by static portfolios that consist of relevant

options on individual currency pairs.

Key words: Currency Basket Options; Static Hedging; Arbitrage Bounds

1 Introduction

For many corporations and financial institutions, basket options are an important tool
in managing currency exposure. In this article, we derive new results relating the prices
of currency basket options to the prices of standard currency option contracts. The need
for basket options arises naturally in practice. For example, a company that purchases
products from a variety of countries may be exposed to a change in the value of a basket of
currencies against its home currency. In seeking to manage its foreign currency exposure,
the company could use relevant options on each foreign currency separately. But this
way would be inefficient when the changes in one currency is offset by a change in other
currency to which the company is exposed. Basket options whose payoffs are based
on multiple currency pairs are traded as alternative instruments to manage currency
exposure.

A number of pricing models have been proposed to price and hedge basket options
after careful calibration to market prices of options on individual underlying assets.1 On
the one hand, a wide spectrum of parametric models are available to practitioners. Bates
(1996) presents a stochastic volatility jump-diffusion model to explain the skewness and
excess kurtosis implicit in currency option prices. Bollen, Gray and Whaley (2000) sug-
gest a regime-switching model and document that the market prices of currency options

∗Correspondence Address: International Business School at Suzhou (IBSS), Xi’an Jiaotong-Liverpool

University. Email: yi.hong@xjtlu.edu.cn.

1Although the analytical formula for basket options is unattainable, there exist a number of numerical

techniques for pricing and hedging them, for instance, Ashraff, Tarczon and Wu (1995) for a variance-

minimizing hedge; Ju (2002) for the method of characterization functions; Brigo, Mercurio, Rapisarda

and Scotti (2004) for the moment-matching approach; Pellizzari (2005) for Monte-Carlo simulation.
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do incorporate some regime-switching information. Daal and Madan (2005) propose a
pure jump model, termed as the variance-gamma (VG) model, to capture large move-
ments in exchange rates. Recently, Carr and Wu (2007) and Bakshi, Carr and Wu (2008)
develop stochastic skew models to generate both stochastic volatility and stochastic skew-
ness which are documented in currency options. On the other hand, some researchers
are interested in copula theory. A copula function is used to construct a multivariate
density distribution in order to be consistent with the market prices of traded assets.
Both Cherubini and Luciano (2002) and Rosenberg (2003) propose approaches to price
basket options with two underlying assets through copula functions.

However, these models are easily mis-specified, because of little information about
which is the correct model. A pricing model delivers the precise and fair price for a
basket option, only if this model is the true representation of reality. As a result, the
way of model building in turn introduces an uncertainty in the choice of model. In
this paper, we tackle the problem of pricing currency basket options from a different
perspective. Rather than using a single parametric model, we consider a set of pricing
models that are consistent with the observed prices of traded assets. The aim is to derive
model-independent price bounds on currency basket options. These bounds are robust to
model misspecification in the sense that they gives no-arbitrage bounds which are little
dependent on the choice of specific pricing models. More importantly, they are enforced
by static replicating portfolios that are constructed from available hedging instruments
at inception when an investor enters into a trading position in a currency basket option.

A set of currency options is identified as hedging instruments. These assets provide
a wide range of hedging strategies for investors. The underlying argument is that vanilla
options determine the marginal risk adjusted probability density of exchange rate prices,
but they do not determine either the complete terminal density or the dynamics of
exchange rates. Fitting a model to the prices of vanilla options and using the model for
designing a dynamic hedge are subject to errors. Also, it is difficult to perfectly hedge a
basket option using option portfolios. These concerns make super-replicating strategies
useful. These trading strategies have the appealing features of model independence and
simplicity, and they only require static positions in hedging instruments at inception. 2

Lamberton and Lapeyre (1992) first suggest that basket options could be hedged using
portfolios of underlying assets. Bertsimas and Popescu (2002) investigate the super-
replication of financial derivatives, including basket options and other exotics. Given the
knowledge about the moments of return distributions or the prices of relevant hedging
assets, they propose a convex optimization method to derive valuation bounds on complex
financial derivatives. This method is closely related to the techniques developed by
Gotoh and Konno (2002) who propose an efficient algorithm to deal with semidefinite
programmes in order to attain valuation bounds on basket options.

D’Aspremont and EI-Ghaoui (2003) and Pena, Vera and Zuluaga (2006) apply the
linear programming (LP) approach to price basket options and suggest that valuation
bounds on these options can be derived from the prices of other relevant basket options.
Laurence and Wang (2005) investigate the relation between pricing and hedging basket
options. In these three papers, valuation bounds on basket options with two underlying
assets may be expressed analytically. In particular, Laurence and Wang (2005) assume

2The way of super-replication in incomplete financial markets can be linked back to the early works

of Kramkov (1994) and EI Karoui and Quenez (1995).
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that there is only one strike for each individual option.
Hobson, Laurence and Wang (2005a, 2005b) extend Laurence and Wang’s results

when traded options are available at a continuum of strike prices. In the first paper,
they use a Lagrange optimization approach to characterize optimal strikes. A super-
replicating strategy that enforces an upper bound is simply a linear combination of
European call options. To support upper price bounds, underlying asset processes must
be comonotonic. In the second paper, they construct the so-called “STP” portfolios to
sub-replicate basket options. Countermonotonic underlying processes yield lower price
bounds. Most recently, Chen, Deelstra, Dhaene and Vanmaele (2008) construct static
super-replicating strategies for a class of exotic options written on a weighted sum of asset
prices, including Asian options and basket options among others. Based on the theory
of integral stochastic orders, they provide a characterization for optimal strikes which is
different from the methodology proposed by Hobson, Laurence and Wang (2005a).

This paper is motivated by an attempt to extend the work of Hobson, Laurence
and Wang (2005a, 2005b). They have derived arbitrage bounds on basket option using
portfolios of options on individual underlying assets. In terms of pricing basket options on
currencies, we make use of the fact that there typically exist deep and liquid markets in all
currency pairs, and the prices of cross-rate options are actually attainable (by contrast
there is little trading in options to trade one share for another). These option prices
carry useful information about the joint distribution of underlying currencies, and thus
valuation bounds on currency basket options could be tightened. These valuation bounds
are enforced by static portfolios of both cross-rate options and options denominated in
the numeraire currency.

This paper is organized as follows. Section 2 introduces the setup. The properties of
both the marginal and joint densities of underlying currency pairs are discussed. Section 3
presents main results. Section 4 provides a numerical analysis regarding both dominating
(dominated) strategies and joint distributions. The final section concludes.

2 Preliminaries

Consider a single-period setting in a frictionless currency market (i.e., no short sale
restrictions, transaction costs and other frictions). Within this setup, all investments
are made at time zero, and all payments are received at time T . There are three main
currencies, the Euro (EUR, €), British pound (GBP, £) and U.S. dollar (USD, $). The
interest rates in all currencies are zero. Let the dollar ($) be the numeraire currency.
The positive variables X and Y represent the (unknown) dollar-denominated prices of
the Euro and British pound at maturity,

X, Y ∈ R+. (1)

Their time-0 prices are $x0 (> 0) and $y0 (> 0). We hereafter also use them to indicate
the corresponding foreign currencies unless otherwise specified. Let the variable Z = Y/X

represent the euro-denominated price of the pound at maturity.
There are European-style call options written on these three currency pairs at all

strikes. It is assumed that the prices of these options are twice differentiable, convex and
decreasing with respect to strike. Specifically, there exist two complete sets of dollar-
denominated options on the Euro (X) and Pound (Y ). There also exists a complete set
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of cross-rate options, the X-denominated options on the Y . All these options mature
at time T . Put options with the same maturity on individual currency pairs are known
through the call-put parity.

Within this setup, we make the following assumption:

(A1) There is no arbitrage among all hedging assets.

Since a continuum of call option prices is available and these prices are twice differ-
entiable, Breeden and Litzenberger (1978) have established that the pricing density of
Arrow-Debreu claims can be inferred from option prices. Therefore, the available option
prices imply that for each of three exchange rates there exists a state price density. Since
option prices are twice differentiable, each price density is continuous with respect to
strike.

Let πi(k) (i = X, Y, Z) be the price density of an Arrow-Debreu claim that pays 1 unit
domestic currency if an exchange rate reaches the level k and zero otherwise. Similarly,
let the integrable function p(x, y) be the price density (or pricing function) of a claim
that pays $1 at maturity if X = x and Y = y. Since the interest rates in all currencies are
zero, the pricing function p has two properties: 1)

∫
R+

2
p(x, y)dxdy = 1 and 2)p(x, y) ≥ 0.

Let P be the set of all pricing functions. Assumption (A1) implies that the set P is not
empty.

Lemma 1. Given the dollar-denominated options on the X and Y and the X-denominated
options on the Y , the absence of arbitrage implies the following equalities:

1) πX(x) =
∫

R+
p(x, y)dy; 2) πY (y) =

∫

R+
p(x, y)dx; 3) πZ(z) =

1
x0

(
∫

R+
xp(x, xz)dx),

(2)

The following lemma shows that the similar properties in Lemma 1 are maintained if
the currency base is changed.

Lemma 2. Given a pricing function p ∈ P that satisfies the conditions in (2), a new
pricing function pX in the currency base X can be derived from the function p in the
following way:

pX(x, y) =
1

x0x
p(

1
x

,
y

x
), for (x, y) ∈ R+

2 ,

such that

1)
∫

R+
pX(x, y)dy =

πX( 1
x )

x0x
; 2)

∫

R+
pX(x, y)dx = πZ(y); 3)

∫

R+
xpX(x, xz)dx =

πY (z)
x0

.

(3)

Throughout this paper, we are interested in the valuation bounds on a basket call
option that delivers the dollar-denominated payoff3

(αX + βY − γ)+, for (α, β, γ) ∈ R3. (4)

Note that this representation also contains the payoffs of spread options. As far as the
valuation bounds on this call is attained, the “put-call” parity relationship for European-
style basket options, as pointed out by Hobson, Laurence and Wang (2005a, 2005b) and

3The function (x)+ takes the non-negative part of x.
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Su (2005), immediately implies that the model-independent valuation bounds on a basket
put can be obtained:

(γ − (αX + βY ))+ = (αX + βY − γ)+ − (αX + βY − γ). (5)

As for the payoff in (4), state price densities implied from option prices impose restrictions
on a set of pricing functions. The possible value range of this payoff is determined by
all pricing functions in P that satisfy the conditions in (2). We now establish valuation
bounds on call options in (4).

3 Valuation Bounds and Hedging Portfolios

We seek arbitrage valuation bounds. When dollar-denominated options are traded as
hedging instruments, the results in Hobson, Laurence and Wang (2005a, 2005b) show
that valuation bounds on the payoff in (4) (α, β, γ > 0) can be attained. We will show
the main result that valuation bounds are (much) tightened when cross-rate options
are traded as hedging instruments. Valuation bounds are enforced by static portfolios
of dollar-denominated options and cross-rate options. Also, the pricing functions that
support these valuation bounds are characterized.

We at present only look at upper price bounds, and lower bounds will be discussed
later. This section first formulates the valuation problem of a basket option in (4) as
an infinite-dimensional LP. This problem is to find the maximum price bound on this
basket option within a set of pricing functions. These functions are subject to restrictions
imposed by option prices. The dual problem is to search for dominating strategies which
enforce upper price bounds. These strategies ensure that an agent who writes this option
can put a floor on potential losses.

3.1 Problem Formulation

Consider the basket option that delivers the payoff in (4) at maturity. Its dollar-
denominated price is formally expressed as follows:

Ep[(αX + βY − γ)+] =
∫

R+
2

[αx + βy − γ]+p(x, y)dxdy, for p ∈ P. (6)

Hence, the price bound on this option is attained by seeking all pricing functions over
the entire set P.

To seek the least upper price bound, we express the valuation problem as an LP:

max
p∈P

∫

R+
2

[αx + βy − γ]+p(x, y)dxdy (7)

s.t.

1)
∫

R+
p(x, y)dy = πX(x); 2)

∫

R+
p(x, y)dx = πY (y); 3)

∫

R+

x

x0
p(x, xz)dx = πZ(z).

The initial market prices of options are incorporated into the three constraints. Further-
more, the first two constraints ensure the following

∫

R+
2

p(x, y)dxdy = 1.
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The feasible set of this program is not empty due to assumption (A1). The value of this
program is bounded below by zero and from above:

Ep[(αX + βY − γ)+] = Ep[(α(X − k1) + β(Y − k2) + (αk1 + βk2 − γ))+]

≤ Ep[(α(X − k1))+] + Ep[(β(Y − k2))+] + Ep[(αk1 + βk2 − γ)+] < ∞,
(8)

for any strikes k1, k2 ∈ R+. So the program in (7) must have a solution.
The dual of the problem in (7) is to find the cheapest dominating strategy. Let

φ = (g(x), h(y), f(z)) (x, y, z ∈ R+) be a trading strategy such that the functions g, h

and f represent the respective components of dollar-denominated and cross-rate options.
As a result, the hedging problem may be described as follows:

min
g,h,f∈R

∫

R+
g(x)πX(x)dx +

∫

R+
h(y)πY (y)dy + x0

∫

R+
f(z)πZ(z)dz, (9)

s.t.

1′) g(x) + h(y) + xf(z)1z=y/x ≥ (αx + βy − γ)+ for all x, y, z ∈ R+,

where 1(·) is an indicator function. Both programs have the same Lagrangian form.
Their equivalence is established through the following result:

Proposition 1 ( (Strong Duality) ). Given assumption (A1), the values of the primal
in (7) and the dual in (9) coincide.

This strong duality follows from Isii (1963), Gotoh and Konno (2002) and Laurence
and Wang (2005). The necessary condition required in Isii’s theorem is satisfied in (8):

Ep[(αX + βY − γ)+] < ∞, for all p ∈ P.

Hence, there exists a strategy which involves trading dollar-denominated options and
cross-rate options. All the strategies that solve the program in (9) construct a non-
empty set A.

Lemma 2 shows that if the currency base is changed, a new pricing function can be
constructed from a pricing function that solves the program in (7). This new pricing
function also maximizes the basket option’s price in the new currency base, and the
associated trading strategy is a dominating one.

Proposition 2. Given the dollar as the currency base, suppose that there exists a pair
(p, φ) (p ∈ P, φ ∈ A) that supports the market prices of all traded options. If (p, φ) is
optimal for the programs in (7) and (9) respectively, so is (pX , φ) based on the currency
X.

This proposition establishes the correspondence between pricing and hedging basket
options in different currency bases. Dominating strategies do not depend on the choice of
numeraire currency. In the next section, we first establish upper bounds on basket options
in the case where only dollar-denominated options are tradable. Valuation bounds on
currency basket options with two underlying assets may be sought by solving the primal
problem where the third restriction in (7) is dropped. Trading strategies that enforce
these bounds can be sought by setting f(z) ≡ 0 in (9). We then assume that cross-rate
options are also traded in markets, and show how these options can tighten valuation
bounds.
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3.2 Upper Valuation Bounds

When only the dollar-denominated options on the X and Y , the upper price bounds
on a basket option with positive parameters (α, β, γ > 0) can be attained by applying
the result in Hobson, Laurence and Wang (2005a). These bounds are enforced by static
portfolios of dollar-denominated options.

Proposition 3. Given a triplet (α, β, γ) ∈ R+
3 , the upper price bounds on the option in

(4) are enforced by the dollar-denominated options on the X and Y as follows:

min
Ka,Kb≥0:αKa+βKb=γ

α

∫

R+
(x−Ka)+πX(x)dx + β

∫

R+
(y −Kb)+πY (y)dy. (10)

The associated pricing function p ∈ P is characterized as follows:

p∗(x, y) =





≥ 0, if (x, y) ∈ (0,K∗
a ]× (0,K∗

b ];
≥ 0, if (x, y) ∈ (K∗

a ,∞)× (K∗
b ,∞);

0, otherwise,
(11)

where the strikes K∗
a and K∗

b solve the problem (10).

From Hobson, Laurence and Wang (2005a), the cheapest dominating strategy is
sought via a Lagrangian approach. As shown in (10), dominating strategies are to buy
call options on the Euro with strike Ka and call options on the Pound with strike Kb.
For a basket option in (4) (α, β, γ > 0), the strikes are chosen so that in the region where
both calls are in the money, and two sets of options replicate it exactly. There is no
possibility of one option being in the money and the other being out of the money. Since
there is no assumption on the behavior of currency prices, these dominating strategies
are robust to both model and correlation misspecification.

The dual provides information about the joint distribution of the variables X and
Y at maturity. Conditional on the marginal price densities, the joint density in (11)
that maximizes the value of the basket option suggests that the variables X and Y are
strongly correlated. The left panel in Figure 1 illustrates this pricing function. Since
the basket option is an option on a basket of the Euro (X) and Pound (Y), maximizing
the correlation between X and Y ensures maximum volatility for the basket and hence
maximum value for an option on the basket.

If the X-denominated options on the Y are traded, information embedded in these
options tends to restrict the range of correlation between X and Y . The following
statement establishes that valuation bounds on basket options are enforced by static
portfolios that consist of both dollar-denominated and cross-rate options.

Proposition 4. Given a triplet (α, β, γ) ∈ R+
3 , the upper price bounds on the option

in (4) are enforced by the dollar-denominated options on the X and Y and the X-
denominated options on the Y as follows:

min
λ,δ,z1,z2,Ki,i=1,2,3,4

∫

R+
[(α− λ)(K1 − x)+ + λ(x−K2)+

+ (α− λ)(x−K3)+ + λ(x−K4)+]πX(x)dx

+
∫

R+
[(β − δ)(z1K2 − y)+ + δ(y − z2K1)+

+ (β − δ)(y − z1K4)+ + δ(y − z2K3)+]πY (y)dy

+
∫

R+
[−(β − δ)(z1 − z)+ + (−δ)(z − z2)+]πZ(z)dz

(12)
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where

1)(β − δ)z1 = λ; δz2 = α− λ, for 0 ≤ z1 ≤ α
β ≤ z2 and λδ 6= 0;

2)λ(K3 −K2) + δ(z1K4 − z2K1) = αK3 + βz1K4 − γ;

3)0 ≤ λ < α; 0 ≤ δ < β; 0 ≤ K1 ≤ K2 ≤ K3 ≤ K4.

The associated probability density function p ∈ P is characterized as follows:

p∗(x, y) =





≥ 0, if (x, y) ∈ (0,K∗
1 ]× [z∗2K∗

1 , z∗1K∗
4 ] ∪ [K∗

1 ,K∗
2 ]× [z∗1K∗

2 , z∗2K∗
1 ];

≥ 0, if (x, y) ∈ [K∗
2 ,K∗

3 ]× (0, z∗1K∗
2 ] ∪ [K∗

2 ,K∗
3 ]× [z∗2K∗

3 ,∞);
≥ 0, if (x, y) ∈ [K∗

3 ,K∗
4 ]× [z∗1K∗

4 , z∗2K∗
3 ] ∪ [K∗

4 ,∞)× [z∗2K∗
1 , z∗1K∗

4 ];
= 0, otherwise,

(13)
where the strikes K∗

i (i = 1, 2, 3, 4), z∗1 , z∗2 and real numbers λ∗, δ∗ solve the problem (12).

To dominate a basket option, hedging strategies involve eight variables. Four variables
Ki (i = 1, 2, 3, 4) are used to determine the specific price levels on the Euro (X). These
variables together with two variables z1 and z2 determine the corresponding price levels
on the Pound (Y ). These price levels are strikes for buying or selling dollar-denominated
options or cross-rate options. The quantity of each hedging instrument is specified by
the variables λ and δ. There exists a feasible solution which is identified in (12):

z1 → 0; z2 →∞;K1 → 0;K4 →∞;λ = 0; δ = 0;

K2 = K3 = Ka; z2K1 = z1K4 = Kb; z1K2 → 0; z2K3 →∞,
(14)

where αKa + βKb = γ. Note that the equalities in the first constraint are valid only for
λ ∈ (0, α) and δ ∈ (0, β), and hence the feasible solution above is consistent with the
constraints in (12). This program therefore has a solution.

In the presence of only dollar-denominated options, a bivariate process (X, Y ) that
maximizes a basket option’s price implies the strong dependence between two currency
pairs. By incorporating information about cross-rate options, valuation bounds on basket
options can be tightened. As a result, the pricing function in (13) that also maximizes
the basket option’ price indicates that the strong dependence two currency pairs might
be unnecessary due to restrictions on correlation between them imposed by cross-rate
options. The right panel in Figure 1 illustrates this pricing function.

Through Proposition 3 and 4, the upper bounds on basket options are derived for
positive parameters (α, β, γ > 0). However, it is unnecessary to require that a currency
basket is constructed by only buying two currencies and selling another. This restriction
is relaxed through the following statement.

Proposition 5. Given a triplet (α, β, γ) ∈ R−3 , the upper price bounds on the option in
(4) are enforced by the dollar-denominated options on the X and Y as follows:

min
Ka,Kb≥0:αKa+βKb=γ

(−α)
∫

R+
(Ka − x)+πX(x)dx + (−β)

∫

R+
(Kb − y)+πY (y)dy. (15)

If the X-denominated options on the Y are traded, the bounds are further enforced as
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Figure 1: Joint Density Distributions for Upper Bounds. The left panel shows a
price density (pricing function) p(x, y) that maximizes the price of a basket option in (4) if
only dollar-denominated options are traded. The right panel illustrates a price density that
maximizes this option’s price when cross-rate options are traded as hedging instruments. In
the right panel, it has (KY

1 , KY
2 , KY

3 , KY
4 ) = (z1K

X
2 , z2K

X
1 , z1K

X
4 , z2K

X
3 ) for 0 < z1 < z2. In

both panels, the shaded areas present the regions where the density p is non-negative, while the
blank areas indicate zero probabilities.

follows:

min
λ,δ,z1,z2,Ki,i=1,2,3,4

∫

R+
[λ(K1 − x)+ + (−α− λ)(K2 − x)+

+ λ(K3 − x)+ + (−α− λ)(x−K4)+]πX(x)dx

+
∫

R+
[δ(z1K2 − y)+ + (−β − δ)(z2K1 − y)+

+ δ(z1K4 − y)+ + (−β − δ)(z2K3 − y)+]πY (y)dy

+
∫

R+
[(−δ)(z1 − z)+ + (−(−β − δ))(z − z2)+]πZ(z)dz

(16)

where

1)δz1 = (−α)− λ; (−β − δ)z2 = λ, if 0 ≤ z1 ≤ α
β ≤ z2 and λδ 6= 0;

2)λ(K3 −K2) + δ(z1K4 − z2K1) = αK2 + βz2K1 − γ;

3)0 ≤ λ < (−α); 0 ≤ δ < (−β); 0 ≤ K1 ≤ K2 ≤ K3 ≤ K4.

The proof of this proposition and the characterization of price functions are accom-
plished similarly, according to Proposition 3 and 4. In fact, upper valuation bounds on
the option in (4) are derived from these results, which will be discussed later.

3.3 Lower Valuation Bounds

We have derived upper valuation bounds on currency basket options. Similarly, lower
bounds on these options can be attained by solving LPs. From Hobson, Laurence and
Wang (2005b), lower price bounds on basket options with two underlying assets are
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enforced by the so-called “STP” portfolios that involve calls and puts on individual un-
derlying assets. The associated bivariate processes (X, Y ) should be counter-monotonic.
Nevertheless, their lower valuation bounds are dependent on the number of disjoint in-
tervals over R+. We establish a lemma to simplify their result.

Lemma 3. Suppose that R+ is partitioned into (2n + 1) (n ≥ 1) disjoint intervals.
Given a triplet (α, β, γ) ∈ R+

3 , the lower bounds attained by Hobson, Laurence and Wang
(2005b) are the non-increasing functions of partition number (n).

This lemma shows that the greatest lower bound is determined by setting n = 1. As
a result, sub-replicating strategies are simplified.

Proposition 6. 1) Given a triplet (α, β, γ) ∈ R+
3 , the lower price bounds on the

option in (4) are enforced by the dollar-denominated options on the X and Y as
follows:

max
0<K1

a≤K2
a,0<K1

b≤K2
b

∫

R+
((−α)(K1

a − x)+ + α(x−K2
a)+)πX(x)dx

+
∫

R+
((−β)(K1

b − y)+ + β(y −K2
b )+)πY (y)dy,

(17)

where αK1
a + βK2

b = αK2
a + βK1

b = γ.

2) Given a triplet (α, β, γ) ∈ R−3 , the lower price bounds on this option are achieved
as follows:

max
0<K1

a≤KX≤K2
a,0<K1

b≤KY ≤K2
b

∫

R+
(α(K1

a − x)+ + (−α)(KX − x)+

+ α(x−KX)+ + (−α)(x−K2
a)+)πX(x)dx

+
∫

R+
(β(K1

b − y)+ + (−β)(KY − y)+

+ β(y −KY )+ + (−β)(y −K2
b )+)πY (y)dy,

(18)

where αK1
a + βK2

b = αK2
a + βK1

b = αKX + βKY = γ.
The associated price density function p ∈ P is characterized as follows:

p∗(x, y) =





≥ 0, if (x, y) ∈ (0, K̂1
a ]× [K̂2

b ,∞) for |α|x + |β|y ≥ |γ|;
≥ 0, if (x, y) ∈ [K̂1

a , K̂2
a ]× [K̂1

b , K̂2
b ] for |α|x + |β|y ≤ |γ| ;

≥ 0, if (x, y) ∈ [K̂2
a ,∞)× (0, K̂1

b ] for |α|x + |β|y ≥ |γ|;
0, otherwise,

(19)

where the strikes K̂1
a , K̂2

a, K̂1
b and K̂2

b solve the problem (17) or (18).

The first part of Proposition 6 directly comes from Lemma 3. Dominating strategies
involve short selling puts and long buying calls on the Euro (Pound) with strike K1

a (K1
b )

and K2
a (K2

b ) so that in the regions both calls and puts are in the money and two sets of
options replicate the option exactly. Sub-replicating strategies are slightly different when
all the parameters in (4) are negative, and they involve trading more calls and puts. Like
dominating strategies specified in Proposition 3, dominated strategies identified here are
robust to both model and correlation mis-specification. Meanwhile, the dual provides
information about the joint density of the variables X and Y at maturity. In order to
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minimize the basket option’s price, the price density function p in (19) suggests that the
process (X, Y ) should be counter-monotonic. The left panel of Figure 2 illustrates this
pricing function.

Now we derive tight valuation bounds when cross-rate options are traded. These valu-
ation bounds are also enforced by static portfolios that consist of both dollar-denominated
options and cross-rate options. The following result establishes these tight valuation
bounds.

Proposition 7. 1) Given a triplet (α, β, γ) ∈ R+
3 , the lower price bounds on the

option in (4) are enforced by the dollar-denominated options on the X and Y and
the X-denominated options on the Y as follows:

max
λ,δ,z1,z2,Ki,i=1,2,3,4

∫

R+
(λ(x−K3)+ + (α− λ)(x−K4)+)πX(x)dx

+
∫

R+
(δ(y − z2K1)+ + (β − δ)(y − z2K2)+)πY (y)dy

+
∫

R+
((−β)(z1 − z)+ + (β − δ)(z − z2)+)πZ(z)dz,

(20)

where

1)βz1 = λ− α; (δ − β)z2 = α, for 0 ≤ z1 ≤ z2;

2)λ(K4 −K3) + δ(z2K2 − z2K1) = αK4 + βz2K2 − γ;

3)αK1 + βz2K1 = γ;αK3 + βz1K3 = γ;

4)λ ≥ α; δ ≥ β; 0 ≤ K1 ≤ K2 ≤ K3 ≤ K4.

2) Given a triplet (α, β, γ) ∈ R−3 , the lower price bounds on this option are enforced
as follows:

max
λ,δ,z1,z2,Ki,i=1,2,3,4

∫

R+
((λ− α)(K3 − x)+ + (−λ)(K4 − x)+)πX(x)dx

+
∫

R+
((δ − β)(z2K1 − y)+ + (−δ)(z2K2 − y)+)πY (y)dy

+
∫

R+
(β(z1 − z)+ + (−δ)(z − z2)+)πZ(z)dz,

(21)

where

1)βz1 = −λ; δz2 = −α, for 0 ≤ z1 ≤ z2;

2)λ(K3 −K4) + δ(z2K1 − z2K2) = αK3 + βz2K1 − γ;

3)αK1 + βz2K1 = γ;αK3 + βz1K3 = γ;

4)λ ≥ 0; δ ≥ 0; 0 ≤ K1 ≤ K2 ≤ K3 ≤ K4.

The associated price function p ∈ P is characterized as follows:

p∗(x, y) =





≥ 0, if (x, y) ∈ (0, K̂3]× (0, ẑ2K̂1] for y
x ∈ [ẑ1, ẑ2] and |α|x + |β|y ≤ |γ| ;

≥ 0, if (x, y) ∈ (0, K̂2]× [ẑ2K̂1, ẑ2K̂2] for y
x ≥ ẑ2 and |α|x + |β|y ≥ |γ| ;

≥ 0, if (x, y) ∈ [K̂3, K̂4]× (0, ẑ1K̂4] for y
x ≤ ẑ1 and |α|x + |β|y ≥ |γ| ;

≥ 0, if (x, y) ∈ [K̂4,∞)× [ẑ2K̂2,∞) for y
x ∈ [ẑ1, ẑ2];

0, otherwise,

where the strikes K̂1, K̂2, K̂3, K̂4, ẑ1 and ẑ2 solve the problem (20) or (21).
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The existence of the strikes that satisfy the conditions in Proposition 7 imply that
there at least exits one dominated trading strategy that consists of dollar-denominated
options and cross-rate options. This strategy is independent of model specification.
Note that the strategies identified in Proposition 6 can be viewed as particular cases of
dominated strategies specified in Proposition 7 for z1 → 0 and z2 →∞. Meanwhile, the
joint density of the process (X, Y ) that minimizes the basket option’s price is shown in
the right panel of Figure 2.

Figure 2: Joint Density Distributions for Lower Bounds. The left panel shows a
price density (pricing function) p(x, y) that minimizes the price of a basket option in (4) if
only dollar-denominated options are traded. The right panel illustrates a price density that
minimizes this option’s price when cross-rate options are traded as hedging instruments. In
the right panel, it has (KY

1 , KY
2 , KY

3 , KY
4 ) = (z1K

X
3 , z1K

X
4 , z2K

X
1 , z2K

X
2 ). In both panels, the

shaded areas present the regions where the density p is non-negative, while the blank areas
indicate zero probabilities.

Since the strategies identified in Proposition 6 can be viewed as the portfolios without
the cross-rate options in an augmented hedging instrument set, the bounds derived from
the program in (20) or (21) should not be cheaper than the bounds attained from program
in (17) or (18). Furthermore, we now establish the following statement that both upper
and lower valuation bounds on basket options with general payoffs are attainable.

Theorem 1. Given a triplet (α, β, γ) ∈ R3, the upper valuation bounds on the option
in (4) can be derived from Proposition 3, 4 and 5, while the lower valuation bounds are
attained through Proposition 6 and 7.

Proof The signs of α, β, γ have the following possible combinations:

] α β (−γ) ] α β (−γ)
1 + + + 5 + - -
2 + + - 6 - - +
3 + - + 7 - + -
4 - + + 8 - - -

For ]1 and ]8, they are degenerate in the sense that the price of the option b is always
(]1) or never (]8) in the money. We have sought valuation bounds in ]2 (Proposition
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3 and 4) and ]6 (Proposition 5). Valuation bounds in ]3 and ]4 can be attained from
Proposition 3 in the appropriate numeraire currencies. Similarly, Proposition 5 can be
applied to ]7 and ]8 by changing currency bases. Similarly, the lower valuation bounds
then can be attained from Proposition 6 and 7.

4 Numerical Analysis

Given the prices of options on three currency pairs, we investigate arbitrage bounds on
basket options, and put the problem into a discrete setup. Within this setup, the prices
of call options on all currency pairs are generated and accordingly three price densities
are constructed. From these price densities, a numerical procedure for seeking both
upper bounds and dominating strategies is proposed. Finally, we qualify the tightness of
valuation bounds, and investigate their sensitivity to relevant parameters.

4.1 Model Implementation

Suppose that the variables X and Y take values in the sets

X ∈ {x0u
n|n ∈ N},

Y ∈ {y0u
n|n ∈ N},

(22)

for three positive initial numbers x0, y0, u > 1 , and N = {−N, · · · ,+N} (an integer
number N). The variable Z is determined by Z = Y/X.

Now consider a basket option that pays [αX + βY − γ]+ dollars at maturity. In
this finite-state model, the problems presented in Section 3.1 are naturally expressed as
finite-dimensional LPs. Let a (2N +1)× (2N +1) matrix P = {pm,n} represent a pricing
function. Let two (2N +1) vectors {πX

m} and {πY
n } (m,n ∈ [−N, N ]) represent the price

densities of Arrow-Debreu claims implied from the dollar-denominated options on the X

and Y . To ensure that all three price densities are consistent in scale, a restriction on
P is imposed so that pm,n = 0 if |m − n| > N . For the price density of Arrow-Debreu
claims implied from cross-rate options, represented by a vector {πZ

j }, this restriction
equivalently states πZ

j=m−n ≥ 0 for |m− n| ≤ N and zero otherwise.
To seek the least upper bound on this basket option, the primal problem in (7) can

be reexpressed as a finite LP

(LP1) find the (2N + 1)× (2N + 1) matrix P so that

max
P

∑
m,n

(αx0u
m + βy0u

n − γ)+pm,n,

s.t.

1)
∑N

n=−N pm,n = πX
m for m ∈ [−N, N ];

2)
∑N

m=−N pm,n = πY
n for n ∈ [−N, N ];

3)
∑min(0,−j)+N

m=max(0,−j)−N umpm,m+j = πZ
j for j ∈ [−N, N ];

4) pm,n ≥ 0 for all m and n.
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Assumption (A1) implies that there exists a price density P consistent with all option
prices. So the solution set for LP1 is not empty. This program is bounded below by zero
and above by (αx0u

N + βy0u
N − γ)+. Therefore, this program must have a solution.

Consider a strategy φ = (G,H, F ) whose three components represent trading posi-
tions in currency options. Each component is represented by a (2N + 1) vector. To seek
the cheapest dominating strategy, the hedging problem in (9) is reexpressed as follows

(LP2) find the (2N + 1)× 1 vectors G, H and F so that

min
G,H,F

∑
m

gmπX
m +

∑
n

hnπY
n +

∑

j

fjπ
Z
j ,

s.t.

1′) gm + hn + umfj1j=n−m ≥ (αx0u
m + βy0u

n − γ)+ for all m,n, j;

2′) gm, hn, fj ∈ R for all m,n, j.

Since the program LP1 has a solution, the LP Duality Theorem implies that the program
LP2 must also have a solution.

4.2 Numerical Results

To attain insights into the tightness of arbitrage bounds, we use a trinomial-tree method
to simulate the dynamics of the Euro (X) and Pound (Y ) exchange rates against the U.S.
dollar. These two exchange rate processes are correlated with coefficient ρ over time, and
have an identical annual implied volatility, e.g., σX = σY = σ. Both the domestic and
foreign interest rate are zero.

For the sets in (22), the levels of the rate X (Y ) are bounded in a range of [x0u
−J , x0u

J ]
([y0u

−J , y0u
J ]) where 0 < J < N . In this way, there are absorbing boundaries imposed

on rate levels for computational convenience. For a large J , these boundaries have no
significant impact on numerical analysis.

All European option prices on the X and Y are separately generated using the trino-
mial tree method over N = 40 time steps. The price densities πX and πY are calculated
from these European options.4 By applying Boyle (1988)’s numerical procedure, we gen-
erate a (feasible) price density P which is consistent with initial option prices on the X

and Y . Finally, the price density πZ is constructed from the price density P .5

All relevant parameters are set by

(x0, y0, t
∗, σ, ρ, u, N, J) = (1.6, 2.5, 1, 0.42, 0.85, 1.12, 40, 30).

The correlation parameter ρ is positive, as both the Pound and Euro exchange rates
against the U.S. dollar are usually positively correlated. The left panel in Figure 3
illustrates the initial price density P generated by Boyle’s procedure. Each contour line
represents the positive prices of this density function. The right panel in Figure 3 reports
the price densities of Arrow-Debreu claims on three exchange rates.

4For a set of option prices C(K), the price density π is calculated as follows:

π(K) =
C(Ku, t)− (1 + u)C(K) + uC(K/u)

Ku−K
,

for each K in the set.
5The density πZ is calculated by πZ

j =
∑min(0,−j)+J

m=max(0,−j)−J
umpm,m+j for j ∈ [−J, J ].
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Figure 3: Initial Probability Densities. The time-zero prices of the exchange rates X and
Y are x0 = 1.6 and y0 = 2.5. The implied volatilities of the processes X and Y are 42%. Both
the domestic rate and foreign rate are zero. The marginal densities πX and πY are attained
within a price mesh of u = 1.12 and J = 30. The marginal density πZ is derived from the
joint density that is calculated using the correlation coefficient ρ = 0.20. In the left panel, each
contour line represents the positive prices of the initial joint density P .

The initial price density P yields a price for a basket option. In order to measure the
tightness of arbitrage bounds, this price can be viewed as a benchmark price, denoted
as Vbs. Let Bh and Bh stand for the upper and lower valuation bounds on this basket
option, enforced by the option prices on the X and Y . Let Bt and Bt be valuation
bounds if cross-rate options are traded as hedging instruments. These new instruments
would tighten arbitrage bounds. To gauge the magnitude of the tightness, we consider
the following measure:

ε = 1− Bt − Bt

Bh − Bh

. (23)

4.2.1 Valuation Bounds and Hedging Strategies

Now consider a basket option that pays [1.2X+0.9Y −3.8]+ dollars after one year. Given
the different sets of hedging instruments, the price functions that deliver the valuation
bounds on this option have been characterized in Figure 1 and 2. Accordingly, the
valuation bounds on this option are attained as follows:

(Bh,Bt, Vbs,Bt,Bh) = (0.38, 0.52, 0.72, 0.83, 0.86).

In terms of tightness, the bounds are substantially improved by ε = 36% when informa-
tion about the prices of cross-rate options is incorporated.

We further investigate the associated hedging strategies that enforce these valuation
bounds. First, the dominating strategy simply involves buying long 1.2 calls on the
X with strike Ka = 1.42 and buying long 0.9 calls on the Y with strike Kb = 2.23.
This strategy delivers the bound Bh. To attain the tight upper valuation bound Bt, the
dominating strategy involves buying dollar-denominated puts and calls on the X and Y

and selling puts and calls on the Z:
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• buying an option portfolio on the X that consists of long 0.56 puts with strike 1.02,
long 0.64, 0.56, 0.64 calls with strikes 1.28, 1.79, 2.25;

• buying an option portfolio on the Y that consists of long 0.57 puts with strike 1.59,
long 0.33, 0.57, 0.33 calls with strikes 1.78, 2.80, 3.14;

• selling an option portfolio on the Z that consists of short 0.57 puts with strike 1.24
and short 0.33 calls with strike 1.75.

As a result, this strategy is cheaper by about 0.04 dollars.
To enforce the bound Bh, the sub-replicating strategy involves selling short 1.2 puts

and buying long 1.2 calls on the X with strikes K1
a = 1.42 and K2

a = 2.01, and selling
short 0.9 puts and buying long 0.9 calls on the Y with strikes K1

b = 1.99 and K2
b = 2.80.

The dominated strategy that delivers the bound Bt can be described as follows:

• buying an option portfolio on the X that consists of long 1.52 puts with strike 1.72
short 0.32 calls with strike 2.24;

• buying an option portfolio on the Y that consists of long 1.44 puts with strike 2.23,
short 0.54 calls with strike 3.93;

• selling a portfolio of the cross-rate options on the Z that consists of short 0.90 puts
with strike 0.88 and short 0.54 calls with strike 2.45.

Equivalently, this strategy improves the lower bound by about 0.14 dollars.

4.2.2 Sensitivity of Valuation Bounds

As shown in Figure 3, an appropriate J is chosen so that three price densities are close
to zero when exchange rate levels reach the absorbing boundaries. In this way, valuation
bounds on basket options are relatively independent of the number of price levels (N).
We now investigate the sensitivity of valuation bounds by varying the jump size (u), as
reported in Table 1. In terms of the measure in (23), all the numbers indicate that the
price bounds on two options are significantly tightened by incorporating price information
about cross-rate options. These numbers also show that these valuation bounds are
relatively robust to changes in the jump size u. The price bounds on the first (second)
option can at least be improved by an average of 36% (32%).

u
[1.2X + 0.9Y − 3.8]+ [−X − Y + 4.8]+

Bh Bt Vbs Bt Bh ε Bh Bt Vbs Bt Bh ε
1.12 0.386 0.527 0.718 0.832 0.863 36.0% 0.782 0.874 0.994 1.117 1.143 32.2%
1.14 0.389 0.534 0.717 0.825 0.862 38.6% 0.783 0.875 0.993 1.115 1.139 32.5%
1.16 0.388 0.538 0.714 0.825 0.863 39.5% 0.780 0.873 0.991 1.111 1.134 32.6%
1.18 0.390 0.583 0.712 0.818 0.863 50.4% 0.783 0.871 0.987 1.106 1.131 32.4%
1.20 0.371 0.577 0.709 0.815 0.865 51.8% 0.784 0.876 0.985 1.105 1.134 34.4%

Table 1: Sensitivity of Valuation Bounds Against Jump Size. The time-zero prices of the
exchange rates X and Y are 1.6 and 2.5. The implied volatilities of the processes X and Y are 42%,
and two processes are correlated with ρ = 0.20. Both the domestic and foreign interest rate are zero.
All prices are attained within a price mesh of J = 30. Two basket options mature at T = 1 (year).

In order to investigate the sensitivity of valuation bounds to changes in correlation
between the Euro and Pound exchange rates, we assume that the coefficient ρ varies
in the range of [−1, 1]. The arbitrage bound Bh (either Bh or Bh) is independent of
correlation coefficient, as this bound is enforced by a portfolio of dollar-denominated
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options. Nevertheless, changes in correlation coefficient have impact on the valuation
bound Bt (either Bt or Bt), as this bound depends on the density πZ that is constructed
from an initial price density P . For each ρ, we use Boyle’s procedure to generate a new
price density P .

ρ
[1.2X + 0.9Y − 3.8]+ [−X − Y + 4.8]+

Bh Bt Vbs Bt Bh ε Bh Bt Vbs Bt Bh ε
-0.80 0.387 0.392 0.483 0.519 0.862 73.3% 0.783 0.793 0.805 0.860 1.142 81.2%
-0.60 0.386 0.401 0.545 0.608 0.861 56.4% 0.783 0.802 0.845 0.924 1.142 66.1%
-0.40 0.386 0.425 0.597 0.678 0.860 46.5% 0.783 0.815 0.887 0.981 1.142 53.7%
-0.20 0.386 0.453 0.644 0.735 0.861 40.5% 0.783 0.833 0.927 1.035 1.142 44.0%

0 0.380 0.500 0.706 0.817 0.860 35.0% 0.782 0.852 0.966 1.084 1.142 35.5%
0.20 0.388 0.530 0.717 0.821 0.860 38.3% 0.782 0.874 0.994 1.116 1.142 32.7%
0.40 0.388 0.584 0.757 0.859 0.860 41.7% 0.782 0.910 1.033 1.142 1.142 35.7%
0.60 0.383 0.652 0.793 0.860 0.860 55.4% 0.782 0.961 1.069 1.142 1.142 49.9%
0.80 0.388 0.741 0.829 0.860 0.860 74.5% 0.782 1.023 1.105 1.142 1.142 67.2%

Table 2: Sensitivity of Valuation Bounds Against Correlation Coefficient. The time-zero
prices of the exchange rates X and Y are 1.6 and 2.5. The implied volatilities of the processes X and
Y are 42%. Both the domestic and foreign interest rate are zero. All prices are attained within a price
mesh of u = 1.12 and J = 30. Two basket options mature at T = 1 (year).

Table 2 presents the sensitivity of valuation bounds when correlation coefficient varies.
The bounds Bt on two options increase as the coefficient ρ increases. In particular, the
bounds Bt approach Bh when the coefficient ρ increases to 1. However, the tightness of
valuation bounds decreases as the the coefficient ρ increases from −0.8 to 0 or decreases
from 0.8 to 0. For ρ = −0.8, the valuation bounds on the first (second) option is
substantially tightened by about 73.3% (81.2%). Similarly, the bounds on these two
options are also greatly tightened for ρ = 0.8, compared with the tightness of bounds at
ρ = 0 (35.0% and 35.5% respectively).

Since the dependence between the Euro (X) and Pound (Y ) has impact on the joint
price density P , the construction of the density πZ means that increasing (decreasing)
ρ leads to increases (decreases) in the kurtosis of the density πZ . For a large ρ (close to
1), the density πZ with high kurtosis implies that cross-rate options have limited impact
on the tightness of upper bounds but significantly improve lower bounds, as shown in
Table 2. This impact on both lower and upper price bounds may be substantial when the
coefficient ρ decreases to −1, as there are more Arrow-Debreu securities with non-zero
prices for trading.

T (year)
[1.2X + 0.9Y − 3.8]+ [−X − Y + 4.8]+

Bh Bt Vbs Bt Bh ε Bh Bt Vbs Bt Bh ε
0.50 0.370 0.449 0.575 0.655 0.674 32.3% 0.725 0.772 0.848 0.938 0.947 25.3%
0.75 0.376 0.484 0.651 0.751 0.775 33.0% 0.751 0.823 0.925 1.035 1.052 29.7%
1.00 0.388 0.531 0.717 0.821 0.860 38.3% 0.782 0.874 0.994 1.116 1.114 32.7%
1.25 0.391 0.571 0.777 0.898 0.934 39.6% 0.815 0.921 1.057 1.191 1.222 33.9%
1.50 0.426 0.615 0.831 0.965 1.006 39.6% 0.849 0.967 1.145 1.257 1.295 35.1%

Table 3: Sensitivity of Valuation Bounds Against Maturity. The time-zero prices of the ex-
change rates X and Y are 1.6 and 2.5. The implied volatilities of the processes X and Y are 42%, and
two processes are correlated with ρ = 0.20. Both the domestic and foreign interest rate are zero. All
prices are attained within a price mesh of u = 1.12 and J = 30.

We further examine the sensitivity of price bounds against other parameters (i.e.,
maturity, implied volatility and non-zero yield rate). Table 3 reports the sensitivity of
valuation bounds to different maturities. In term of magnitude, the price bounds on the
first (second) option are increasingly tightened from 32.3% (25.3%) to 39.6% (35.1%) as
maturity increases from 6 months to 15 months. The similar result is observed in Table
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σ
[1.2X + 0.9Y − 3.8]+ [−X − Y + 4.8]+

Bh Bt Vbs Bt Bh ε Bh Bt Vbs Bt Bh ε
25% 0.371 0.427 0.523 0.592 0.606 29.3% 0.712 0.743 0.799 0.873 0.878 21.5%
30% 0.370 0.451 0.578 0.659 0.679 32.5% 0.726 0.774 0.852 0.942 0.952 25.6%
35% 0.372 0.481 0.635 0.732 0.754 34.3% 0.745 0.812 0.909 1.012 1.030 29.9%
40% 0.384 0.511 0.694 0.801 0.829 35.1% 0.771 0.855 0.969 1.088 1.109 31.3%
45% 0.391 0.551 0.754 0.869 0.908 38.5% 0.802 0.902 1.032 1.161 1.190 33.5%

Table 4: Sensitivity of Valuation Bounds Against Implied Volatility. The time-zero prices of
the exchange rates X and Y are 1.6 and 2.5. The underlying processes X and Y are correlated with
ρ = 0.20. Both the domestic and foreign interest rate are zero. All prices are attained within a price
mesh of u = 1.12 and J = 30. Two basket options mature at T = 1 (year).

Yield
Rate

[1.2X + 0.9Y − 3.8]+ [−X − Y + 4.8]+

Bh Bt Vbs Bt Bh ε Bh Bt Vbs Bt Bh ε
-10% 0.157 0.313 0.464 0.564 0.598 43.1% 1.108 1.153 1.234 1.348 1.353 20.4%
-5% 0.237 0.405 0.575 0.680 0.714 42.1% 0.938 1.003 1.103 1.222 1.234 26.7%
0% 0.380 0.520 0.704 0.805 0.843 38.3% 0.766 0.856 0.974 1.094 1.119 32.7%

+5% 0.575 0.656 0.849 0.969 0.987 23.9% 0.596 0.713 0.851 0.973 1.007 36.9%
+10% 0.795 0.819 1.015 1.135 1.151 11.0% 0.429 0.581 0.735 0.857 0.901 41.3%

Table 5: Sensitivity of Valuation Bounds Against Yield Rate. The time-zero prices of the
exchange rates X and Y are 1.6 and 2.5. The implied volatilities of the processes X and Y are 42%, and
two processes are correlated with ρ = 0.20. The yield rate (∆) is the difference between the domestic

risk-free interest rate (r$
d) and foreign interest rate (rf ), i.e., ∆ = r$

d − rf . The domestic interest rate is
set by 2%, and the foreign interest rates for the Euro (X) and Pound (Y ) are assumed to be identical.
All prices are attained within a price mesh of u = 1.12 and J = 30. Two basket options mature at T = 1

(year), and thus the discount factor is expressed as DF = e−r$
dT = 0.98.

4. The price bounds on the first (second) option are increasingly improved from 29.3%
(21.5%) to 38.5% (33.5%) as volatility level increases by 80%.

Table 5 shows that changing interest rates has different impact on two basket options.
The tightness of the price bounds on the first option (α, β, γ > 0) is decreasing as the
foreign interest rate rf decreases, while the bounds on the second option (α, β, γ < 0) are
increasingly improved. Overall, the valuation bounds on two options can be tightened
by cross-rate options for different interest rate levels. The tightness of the price bounds
on the first (second) option has an average of about 31.7% (31.5%) when the domestic
interest rate is set as 2% and the foreign interest rate varies in a range of [−8%, 12%].

5 Conclusions

Basket options are traded as alternative instruments to manage risk exposure in multiple
underlying assets in an effective way. Despite their attractive features, pricing basket
options poses a challenge to practitioners. Through this paper, we have studied the
problem of valuing currency basket options. Instead of precise prices, we derive arbitrage
valuation bounds on these options that are robust to the choice of specific pricing models.

We identify a collection of tradable options on individual currency pairs as hedging
instruments. Three currencies, the Euro, British Pound and U.S. dollar are considered.
We emphasize the role of price information about cross-rate options in pricing basket
options. More specifically, arbitrage bounds are derived from portfolios that involve only
dollar-denominated options. If cross-rate options are additionally traded, price bounds
on basket options can be further tightened, and are enforced by static portfolios of
both dollar-denominated options and cross-rate options. The tightness of these bounds
highlights the informational content embedded in cross-rate options, implying that the
incorporation of the information about these options may be helpful to reduces arbitrage
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opportunities imposed on currency basket options to a significant extent.
We have derived both upper and lower bounds on currency basket options. These

valuation bounds are enforced by static hedging strategies that are constructed from
available hedging instruments, e.g., the options on individual currency pairs. In partic-
ular, it is found that the lower bounds derived by Hobson, Laurence and Wang (2005b)
have the reduced form. Meanwhile, these strategies are associated with the joint densi-
ties of underlying currencies. These densities then characterize those pricing models that
produce robust valuation bounds on currency basket options.
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A Proof of Lemma 1

Proof Let C(K) be the market price of an option with payoff (S −K)+ for K ∈ R+. Since a

continuum of option prices is available at inception and these prices are twice differentiable, the

price density of Arrow-Debreu claims is known from Breeden and Litzenberger (1978):

π(k) =
∂2C(K)

∂K2
|K=k, (24)

for each strike k. Given the prices of the dollar-denominated options on the X and Y , and the

X-denominated options on the Y , there exists a price density for each currency pair.

Let p(x, y) represent the price density of a claim that pays $1 if X = x and Y = y. The non-

arbitrage argument in assumption (A1) implies that there must exist a risk-neutral probability

measure µ such that

πX(x) = Eµ[1X=x] = Eµ[

∫

R+
1X=x1Y =ydy] =

∫

R+
Eµ[1X=x1Y =y]dy =

∫

R+
p(x, y)dy, (25)

given the dollar as the numeraire currency. Similarly, we also have

πY (y) = Eµ[1Y =y] =

∫

R+
p(x, y)dx. (26)
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Since the X-denominated price of a claim that pays 1 unit X if X = x and Y = xz has the

density πZ(z), it is equivalent to stating that

• the time-0 price density of this claim is x0π
Z(z);

• the time-T payoff of this claim is
∫
R+ x1X=x1Y =xzdx,

if the U.S. dollar is the base currency. This statement leads to the third equality

πZ(z) =
1

x0
Eµ[

∫

R+
x1X=x1Y =xzdx] =

1

x0

∫

R+
xp(x, xz)dx. (27)

B Proof of Lemma 2

Proof Given the currency X as the base, let the function pX(x, y) be the price density of a

claim that pays 1 unit X if 1/X = x and Y/X = y. Equivalently, this claim pays 1/x dollars,

and its dollar-denominated price has a density x0pX(x, y). Recall that the function p(1/x, y/x)

is the dollar-denominated price density of a claim that pays one dollar if X = 1/x and Y = y/x.

To avoid arbitrage, we then have

x0pX(x, y) =
1

x
p(

1

x
,
y

x
), (28)

which immediately results in the first equality

∫

R+
pX(x, y)dy =

∫

R+

1

x0x
p(

1

x
,
y

x
)d(

y

x
) =

1

x0x
πX(

1

x
). (29)

This equality states that the dollar-denominated price density of a claim that pays 1 unit X if

1/X = x is equal to πX(1/x)/(x0x).

Also, it is easy to derive the following result:

∫

R+
pX(x, y)dx = πZ(y), (30)

which determines the X-denominated price density of a claim that pays 1 unit X if Y/X = y.

To derive the third equality, consider a claim that pays 1 unit X if 1/X = x and Y/X = xz

for z ∈ R+. Its X-denominated price density is pX(x, xz). Meanwhile, it is known that the

dollar-denominated price density of a claim that pays $1 if Y = z is πY (z) such that

x0

∫

R+
xpX(x, xz)dx =

∫

R+
p(

1

x
, z)d(

1

x
) = πY (z), (31)

which yields the third equality.

C Proof of Proposition 2

Proof Given the dollar as the currency base, suppose that there exists a pair of (p, φ) (p ∈
P, φ ∈ A) that solves two programs in (7) and (9). From Lemma 2, a price density in the

currency base X can be determined as follows:

pX(x, y) =
1

x0x
p(

1

x
,
y

x
), for (x, y) ∈ R+

2 . (32)

Then if the function p maximizes the dollar-denominated price of a basket option, the new

function pX also maximizes the X-denominated price of this option in order to avoid arbitrage.

To see that the strategy φ dominates the basket option based on the currency X, consider

its X-denominated payoff:

[α + βy − γx]+, for (x, y) ∈ R+
2 . (33)
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As the dual of pricing, hedging this payoff would involve a portfolio of both the dollar-denominated

options on the X and Y and the X-denominated options on the Y :

g(
1

x
)x + xh(w)1w=y/x + f(y) ≥ [α + βy − γx]+, (34)

which is equivalent to holding g( 1
x
) claims if 1/X = x, h(w) claims if Y = w and f(y) claims if

Y/X = y at inception. This inequality may be expressed as in dollars

g(
1

x
) + h(w) +

1

x
f(y)1y=xw ≥ [α

1

x
+ β

y

x
− γ]+. (35)

This is identical to the expression by setting x = 1
x̂

g(x̂) + h(w) + x̂f(y)1y=w/x̂ ≥ [αx̂ + βw − γ]+. (36)

Since the strategy φ = (g, h, f) solves the dual problem in (9), the inequality above implies that

this strategy also dominates the basket option in the currency base X.

D Proof of Proposition 3

Proof To derive upper bounds, consider the dollar-denominated payoff of a basket option in

(4):

(αX + βY − γ)+ ≤ α(X − γλ1

α
)+ + β(Y − γλ2

β
)+, for (α, β, γ) ∈ R+

3 , (37)

for λ1, λ2 ≥ 0 and λ1 + λ2 = 1.

By setting Ka = γλ1
α

≥ 0 and Kb = γλ2
β

≥ 0, the upper bound on this basket option is

determined as follows:

B = min
Ka,Kb≥0:αKa+βKb=γ

α

∫

R+
(x−Ka)+πX(x)dx + β

∫

R+
(y −Kb)

+πY (y)dy. (38)

Two strikes Ka and Kb are determined by λ1 and λ2. The solution set for this program is

not empty. This program is bounded above, and so it must have a solution. Let K∗
a and K∗

b be

the optimal solutions for this program such that

B = α

∫

R+
(x−K∗

a)+πX(x)dx + β

∫

R+
(y −K∗

b )+πY (y)dy. (39)

To see that there exists a density function p that supports this bound, define two separated

sets

A = (0, K∗
a ]× (0, K∗

b ] ∪ (K∗
a ,∞)× (K∗

b ,∞);

B = R+
2 \A.

(40)

Consider a candidate density function:

p∗(x, y) =

{
≥ 0, if (x, y) ∈ A;

0, if (x, y) ∈ B,
(41)

such that
∫
R+ p∗(x, y)dy = πX(x) and

∫
R+ p∗(x, y)dx = πY (y).

To ensure the existence of such a density function, consider the construction of a process

(X, Y ) so that the variable Y is an increasing function of the X. Given any ν ∼ U [0, 1], there

exists a real number vector (x̄, ȳ) ∈ R+
2 and the random variable vector (X, Y ) so that

prob(X ≤ x̄) = prob(Y ≤ ȳ) = ν. (42)

A bivariate process (X, Y ) is constructed through the inverse function, and so this process is

comonotonic. This process implies that:
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i) the events (X ≤ x̄) and (Y ≤ ȳ) are mutually compatible each other and so do the events

(X > x̄) and (Y > ȳ);

ii) the events (X > x̄) and (Y ≤ ȳ) are mutually exclusive each other and so do the events

(X ≤ x̄) and (Y > ȳ).

By setting x̄ = K∗
a and ȳ = K∗

b , we have the following equality in the regions where the

events (X > x̄, Y > ȳ) or (X ≤ x̄, Y ≤ ȳ) occur:

(αX + βY − γ)+ = α(X −K∗
a)+ + β(Y −K∗

b )+. (43)

In the regions where the events (X ≤ x̄, Y > ȳ) or (X > x̄, Y ≤ ȳ) occur, we have the following

inequality:

(αX + βY − γ)+ < α(X −K∗
a)+ + β(Y −K∗

b )+. (44)

For the candidate density function p∗, the price of the basket option can be expressed as

follows:

Ep∗ [(αx + βy − γ)+] = α

∫

R+
(x−K∗

a)+πX(x)dx + β

∫

R+
(y −K∗

b )+πY (y)dy = B. (45)

E Proof of Proposition 4

Proof 1) We first set up a class of dominating hedging portfolios. Eight price levels are chosen

from the X and Y

0 < K1 < K2 < K3 < K4;

0 < Kb
1 < Kb

2 < Kb
3 < Kb

4,
(46)

so that these prices determine two price levels on the Z:

z1 =
Kb

1

K2
=

Kb
3

K4
, z2 =

Kb
2

K1
=

Kb
4

K3
. (47)

To dominate the payoff of a basket option in (4), consider the strategy φ which consists of

three components:

i) the holdings of the dollar-denominated options on the X are

• long (α− λ) puts at strike K1;

• long λ calls at strike K2;

• long (α− λ) calls at strike K3;

• long λ calls at strike K4;

ii) the holdings of the dollar-denominated options on the Y are

• long (β − δ) puts at strike Kb
1;

• long δ calls at strike Kb
2;

• long (β − δ) calls at strike Kb
3;

• long δ calls at strike Kb
4;

iii) the holdings of the X-denominated options on the Y are

• short (β − δ) puts at strike z1;

• short δ calls at strike z2.
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This strategy would lead to the terminal payoff

g(x) =





(α− λ)(K1 − x)+, if x ≤ K1;

0, if K1 < x < K2;

λ(x−K2)
+, if K2 ≤ x < K3;

α(x−K3)
+ + λ(K3 −K2) if K3 ≤ x < K4;

λ(x−K4)
+ + α(x−K3)

+ + λ(K3 −K2) if K4 ≤ x;

h(y) =





(β − δ)(Kb
1 − y)+, if y ≤ Kb

1;

0, if Kb
1 < y < Kb

2;

δ(y −Kb
2)

+, if Kb
2 ≤ y < Kb

3;

β(y −Kb
3)

+ + δ(Kb
3 −Kb

2) if Kb
3 ≤ y < Kb

4;

δ(y −Kb
4)

+ + β(y −Kb
3)

+ + δ(Kb
3 −Kb

2) if Kb
4 ≤ y;

f(z) =





−(β − δ)(z1 − z)+, if 0 < z ≤ z1;

0, if z1 < z < z2;

−δ(z − z2)
+, if z2 ≤ z.

(48)

From the program (12), there are three equalities:

(β − δ)z1 = λ; δz2 = α− λ, for 0 < z1 ≤ α
β
≤ z2;

λ(K3 −K2) + δ(Kb
3 −Kb

2) = αK3 + βKb
3 − γ(> 0),

(49)

for λ ∈ (0, α) and δ ∈ (0, β). The equalities in (47) equivalently state that

z1 =
Kb

3 −Kb
1

K4 −K2
, z2 =

Kb
4 −Kb

2

K3 −K1
. (50)

From these equalities, we can derive the following (in)equalities:

λ(K1 −K2) + δ(Kb
3 −Kb

4) = αK1 + βKb
3 − γ ≤ 0;

λ(K3 −K4) + δ(Kb
1 −Kb

2) = αK3 + βKb
1 − γ ≤ 0;

αK4 + βKb
2 ≥ γ; αK2 + βKb

4 ≥ γ.

(51)

These (in)equalities can establish the following results:

g(x) + h(y) + xf(z)1z=y/x − [αx + βy− γ]+ =





0, if 0 < x ≤ K1 and Kb
2 ≤ y ≤ Kb

3;

0, if K1 ≤ x ≤ K2 and Kb
1 ≤ y ≤ Kb

2;

0, if K2 ≤ x ≤ K3 and 0 < y ≤ Kb
1;

0, if K2 ≤ x ≤ K3 and y ≥ Kb
4;

0, if K3 ≤ x ≤ K4 and Kb
3 ≤ y ≤ Kb

4;

0, if x ≥ K4 and Kb
2 ≤ y ≤ Kb

3;

> 0, otherwise.

(52)

Therefore, the strategy φ dominates the basket option in (4). As a result, the minimum cost of

such a strategy would provide an upper price bound for this basket option:

min
λ,δ,z1,z2,Ki,i=1,2,3,4

∫

R+
[(α− λ)(K1 − x)+ + λ(x−K2)

+

+ (α− λ)(x−K3)
+ + λ(x−K4)

+]πX(x)dx

+

∫

R+
[(β − δ)(Kb

1 − y)+ + δ(y −Kb
2)

+

+ (β − δ)(y −Kb
3)

+ + δ(y −Kb
4)

+]πY (y)dy

+

∫

R+
[−(β − δ)(z1 − z)+ + (−δ)(z − z2)

+]πZ(z)dz

(53)
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where

1)(β − δ)z1 = λ; δz2 = α− λ, for 0 ≤ z1 ≤ α
β
≤ z2 and λ ∈ (0, α), δ ∈ (0, β);

2)λ(K3 −K2) + δ(Kb
3 −Kb

2) = αK3 + βKb
3 − γ;

3)Kb
1 = z1K2, K

b
2 = z2K1, K

b
3 = z1K4, K

b
4 = z2K3;

4)0 ≤ λ < α; 0 ≤ δ < β;

5)0 ≤ K1 ≤ K2 ≤ K3 ≤ K4.

For the problem in (53), there exists a feasible solution by setting

z1 → 0; z2 →∞; K1 → 0; K4 →∞; λ = 0; δ = 0;

K2 = K3 = Ka; z2K1 = z1K4 = Kb; z1K2 → 0; z2K3 →∞;
(54)

where αKa + βKb = γ. This solution leads to upper bounds in Proposition 3. The objective

function in (53) is bounded above. Therefore, this program must have a solution which yields

the least upper price bound on the basket option in (4).

2) We now build up a class of pricing functions p(x, y) which support these dominating

portfolios. Define two separated sets as follows:

A =(0, K1]× [Kb
2, Kb

3] ∪ [K1, K2]× [Kb
1, Kb

2] ∪ [K2, K3]× (0, Kb
1]

∪ [K2, K3]× [Kb
4,∞) ∪ [K3, K4]× [Kb

3, Kb
4] ∪ [K4,∞)× [Kb

2, Kb
3],

B =R2
+\A.

(55)

So the set A indicates the region where dominating strategies exactly replicate a basket option,

and the set B is its complement.

When only dollar-denominated options are traded, a price function p is attained, associated

with two strikes K∗
a and K∗

b , as shown in the left panel of Figure 1. Proposition 3 has established

that

p(x, y) =





≥ 0, if (x, y) ∈ (0, K∗
a ]× (0, K∗

b ];

≥ 0, if (x, y) ∈ (K∗
a ,∞)× (K∗

b ,∞);

0, otherwise.

If the X-denominated options on the Y are traded, their quoted prices in markets may be

consistent with the price function p so that valuation bounds are then not tightened. This

scenario is linked to a feasible solution in (54). Otherwise, we consider the following construction.

I) Given the price function p, we first pick up two positive random numbers z1 and z2 so

that 0 < z1 < α
β

< z2 < ∞. Four points from the X are chosen so that

0 < K1 < K2 < K∗
a < K3 < K4,

and four points from the Y are then determined

Kb
1 = z1K2 < Kb

2 = z2K1 < K∗
b < Kb

3 = z1K4 < Kb
4 = z2K3.

Therefore, the joint density p is divided into 36 small partitions.

To construct a density shown in the right panel of Figure 1, the density of one node (x, y)

in the set A is added by a small number ε > 0, and then the density of another node (x, ỹ) or

(x̃, y) in the set B is subtracted by ε. In this way, a new price function p̂ that is consistent with

the marginals πX and πY is constructed from the density p.

II) Since the dollar-denominated options on the X and Y are properly priced under the

new price function p̂, the marginal condition implies that:

Ep̂[X] =

∫

(x,y)∈A

xp̂(x, y)dxdy =

∫

(x,xz)∈A

xp̂(x, xz)dxdz = x0.
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For (x, xz) ∈ A and νz ∼ U [0, 1], define
∫

x
xp̂(x, xz)dx = x0νz so that

∫
z

∫
x

xp̂(x, xz)dxdz =∫
z
x0νzdz = x0.

To be consistent with the marginal πZ , a new price function p∗ is constructed from p̂ so that∫
x

xp∗(x, xz)dx = x0π
Z(z) for (x, xz) ∈ A. This requires that

∫
x

x(p̂(x, xz) − p∗(x, xz))dx =

x0(νz − πZ(z)) and also
∫

z
x0(νz − πZ(z))dz = 0. We pick up three random numbers za, zb and

zc from the Z so that za < zb =
√

zazc < zc and

νza − πZ(za) + νzb − πZ(zb) + νzc − πZ(zc) = 0.

For two small positive numbers κ1 and κ2 (κ1(νzb − πZ(zb)) > κ2(νzc − πZ(zc))), three points

from the X in the set A are chosen so that the adjustment of the density p̂ at each node is

reported as follows:

za zb zc

xa 0 -κ1 +κ1

xb +κ1 κ2 − κ1 -κ2

xc -κ2 +κ2 0

To be consistent with the density πZ , all three points xa, xb and xc (x2
b = xaxc) are attained

by solving an equation system:

xa =
(νzb − πZ(zb))

2

κ1(νzb − πZ(zb))− κ2(νzc − πZ(zc))
x2

0,

xb =
(νzb − πZ(zb))(νzc − πZ(zc))

κ1(νzb − πZ(zb))− κ2(νzc − πZ(zc))
x2

0,

xc =
(νzc − πZ(zc))

2

κ1(νzb − πZ(zb))− κ2(νzc − πZ(zc))
x2

0.

By repeating this process, we have
∫

z
x0(νz − πZ(z))dz = 0. A new price function p∗ is con-

structed from p̂, associated with two adjustable variables κ1 and κ2. Hence, the X-denominated

options on the Y are priced correctly under this price function.

Suppose there exists a group of parameters (z∗1 , z∗2 , K∗
1 , K∗

2 , K∗
3 , K∗

4 ) that support such price

function p∗. Given these parameters, two separated sets A∗ and B∗ are determined so that

A∗ ∪B∗ = R2
+. Then there must exist a candidate joint distribution:

p∗(x, y) =

{
≥ 0, if (x, y) ∈ A∗;

= 0, if (x, y) ∈ B∗,
(56)

so that
∫
R+ p∗(x, y)dy = πX(x),

∫
R+ p∗(x, y)dx = πY (y) and

∫
R+ xp∗(x, xz)dx = πZ(z)/x0.

The quantities of λ∗ and δ∗ are derived from the first condition in (53). Therefore, the

dominating strategy provides the least upper bound on this basket option

Ep∗ [g
∗(x) + h∗(y) + xf∗(z)1z=y/x − (αx + βy − γ)+] = 0.

This condition ensures the existence of a candidate joint density specified in (56).

F Proof of Lemma 3

Proof First of all, define two new random variables by setting X̃ = αX and Ỹ = βY so that

the payoff of a basket option is re-expressed as [X̃ + Ỹ − γ]+ for (α, β, γ) ∈ R+
3 . According to

Hobson, Laurence and Wang (2005b), partition R+ into (2n + 1) (n ≥ 1) finite intervals in the

way:

0 = K̃1
0 < K̃1

1 < · · · < K̃1
2n < γ < K̃1

2n+1 = ∞,

so that (0, K̃1
1 ) ∪ (∪2n

i=1[K̃
1
i , K̃1

i+1)) ∪ [K̃1
2n+1,∞) = (0,∞). Let

K̃2
i = γ − K̃1

2n+1−i.
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Hence R+
2 may be expressed as the union of finite intervals:

R+
2 =

2n+1⋃
i,j=1

Rij , for Ri,j = {(x̃, ỹ) ∈ R+
2 : K̃1

i−1 ≤ x̃ < K̃1
i , K̃2

j−1 ≤ ỹ < K̃2
j }.

Now consider a portfolio which consists of two components:

1) the holdings of the dollar-denominated options on the X are expressed as follows:

fX(x̃) = x̃+ +

n∑
i=1

{(x̃− K̃1
2i)

+ − (x̃− K̃1
2i−1)

+}; (57)

2) the holdings of the dollar-denominated options on the Y are expressed as follows:

fY (ỹ) = ỹ+ +

n∑
j=1

{(ỹ − K̃2
2j)

+ − (ỹ − K̃2
2j−1)

+}, (58)

associated with the amount of cash, ω =
∑n

l=1(K̃
2
2l − K̃2

2l−1)− γ.

At maturity, the payoff to this portfolio in each region Rij would be equal to

fX(x̃) + fY (ỹ) + ω = fX(x̃)− fX(γ − ỹ)

= x̃+ +

i≤n∑
m=1

((x̃− K̃1
2m)+ − (x̃− K̃1

2m−1)
+)

− {(γ − ỹ)+ +

j≤n∑

k=1

((K̃2
2k−1 − ỹ)+ − (K̃2

2k − ỹ)+)},

(59)

due to fX(γ − ỹ) + fY (ỹ) + ω = 0.

Since the function f has the slope 0 or 1, the mean value theorem implies that

fX(x̃)− fX(γ − ỹ) ≤ [x̃− (γ − ỹ)]+ = [αx− (γ − βy)]+ = [αx + βy − γ]+. (60)

In other words, this result may be re-expressed as

[fX(x̃)− fX(γ − ỹ)]− [x̃ + ỹ − γ]+ =




0, if x̃ + ỹ = γ;

0, if x̃ + ỹ > γ and x̃, γ − ỹ ∈ (K̃1
2i, K̃

1
2i+1);

0, if x̃ + ỹ < γ and x̃, γ − ỹ ∈ (K̃1
2i−1, K̃

1
2i);

< 0, otherwise.

(61)

Therefore, the terminal payoff in (59) sub-replicates the basket option in the region Rij , and

thus it is dominated over R+
2 . The initial cost provides a lower price bound on this option:

B(n) =

∫

R+
α(x +

n∑
i=1

((x− K̃1
2i/α)+ − (x− K̃1

2i−1/α)+))πX(x)dx

−
∫

R+
β((

γ

β
− y)+ +

n∑
j=1

((K̃2
2j−1/β − y)+ − (K̃2

2j/β − y)+))πY (y)dy.

(62)

Let K1
i = K̃1

i /α and K2
j = K̃2

j /β (1 ≤ i, j ≤ 2n + 1). To see that the bound B(n) is

the non-increasing function of partition number n. Recall the terminal payoff to the hedging

portfolio:

fX(αx) + fY (βy) + ω = (−α)(K1
1 − x)+ + α(x−K1

2 )+ + (−β)(K2
2n−1 − y)+

+ β(y −K2
2n)+ + (αK1

1 + βK2
2n − γ) + α

n∑
i=2

((x−K1
2i)

+ − (x−K1
2i−1)

+)

+ β

n−1∑
j=1

((y −K2
2j)

+ − (y −K2
2j−1)

+) + β(

n−1∑

l=1

(K2
2l −K2

2l−1))

= (−α)(K1
1 − x)+ + α(x−K1

2 )+ + (−β)(K2
2n−1 − y)+ + β(y −K2

2n)+ ≤ [αx + βy − γ]+,

(63)
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where αK1
1 + βK2

2n = αK1
2 + βK2

2n−1 = γ, because for each x ∈ [K1
2i−1, K

1
2i), there exists a

y = γ−αx
β

∈ [K2
2n+1−2i, K

2
2n+2−2i) so that

α

n∑
i=2

((x−K1
2i)

+ − (x−K1
2i−1)

+) + β

n−1∑
j=1

((y −K2
2j)

+ − (y −K2
2j−1)

+) + β(

n−1∑

l=1

(K2
2l −K2

2l−1))

= 0

(64)

Now consider a strategy that involves selling α puts and buying α calls on the X with strikes

K1
1 and K1

2 , and selling β puts and buying β calls on the Y with strikes K2
2n−1 and K1

2n. This

strategy sub-replicates the payoff [αx + βy − γ]+. In sum, the bound B(n) is the decreasing

function of partition number n.

G Proof of Proposition 6

Proof Given a triplet (α, β, γ) ∈ R+
3 , Lemma 3 implies that sub-replicating strategies for a

basket option consist of two components:

i) the holdings of the dollar-denominated options on the X involve short α puts at strike

K1
a and long α calls at strike K2

a;

ii) the holdings of the dollar-denominated options on the Y involve short β puts at strike K1
b

and long β calls at strike K2
b ,

where αK1
a + βK2

b = αK2
a + βK1

b = γ. It is easy to verify that the terminal payoffs generated

by these strategies would sub-replicate the basket option in the way:

g(x) + h(y)− [αx + βy − γ]+ =





0, if (x, y) ∈ (0, K1
a]× [K2

b ,∞) and αx + βy ≥ γ;

0, if (x, y) ∈ [K1
a, K2

a]× [K1
b , K2

b ] and αx + βy ≤ γ;

0, if (x, y) ∈ [K2
a,∞)× (0, K1

b ] and αx + βy ≥ γ;

< 0, otherwise.

(65)

Given a triplet (α, β, γ) ∈ R−3 , we consider trading strategies as follows

i) the holdings of the dollar-denominated options on the X involve short α puts at strike

K1
a, long α calls at strike K2

a, and long α calls and short α puts at strike KX ;

ii) the holdings of the dollar-denominated options on the Y involve short β puts at strike

K1
b , long β calls at strike K2

b , and long β calls and short β puts at strike KY ,

where αK1
a + βK2

b = αK2
a + βK1

b = αKX + βKY = γ. It is easy to verify that the terminal

payoffs generated by these strategies would sub-replicate the basket option as shown in (65).

Therefore, the valuation bounds on this option can be represented in (17) and (18). The solution

sets of these programs are not empty, provided that there always exist strikes for K1
a, K2

a, K1
b ,

K2
b , KX and KY . Also, these programs are bounded from above and thus must have solutions.

To see that there exists a price function p that supports the bound in (17) or (18), consider

the construction of a counter-monotonic process (X, Y ) so that the variable Y is a non-increasing

function of the variable X. More specifically, there exists a real number vector (x̄, ȳ) ∈ R+
2 so

that

prob(X ≤ x̄) = ν; prob(Y ≤ ȳ) = 1− ν, for ν ∼ U [0, 1]. (66)

Then a counter-monotonic process (X, Y ) is constructed through the inverse function, and the

variables X and Y have the desired marginal densities. The joint density of (X, Y ) is specified

in (19).
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H Proof of Proposition 7

Proof 1) Given a triplet (α, β, γ) ∈ R+
3 , we shall set up a class of dominated hedging portfolios

for the option b. First of all, pick up four points from the X and four points from the Y :

0 < K1 < K2 < K3 < K4; 0 < KY
1 < KY

2 < KY
3 < KY

4 , (67)

so that there exists two variables z1 and z2 (0 < z1 ≤ z2 < ∞)

i) z1 =
KY

1

K3
=

KY
2

K4
, z2 =

KY
3

K1
=

KY
4

K2
, (68)

and

ii) αK1 + βKY
3 = γ; αK2 + βKY

2 = γ; αK3 + βKY
1 = γ. (69)

To sub-replicate the payoff of a basket option, consider a trading strategy:

i) the holdings of the dollar-denominated options on the X consist of long λ calls at strike

K3 and short (λ− α) call at strike K4;

ii) the holdings of the dollar-denominated options on the Y consist of long δ calls at strike

KY
3 and short (δ − β) call at strike KY

3 ;

iii) the holdings of the X-denominated options on the Y consist of short β puts at strike z1,

and short (δ − β) calls at strike z2,

for λ ≥ α and δ ≥ β.

Following the conditions in (20),

βz1 = λ− α; (δ − β)z2 = α, for 0 < z1 ≤ z2 < ∞;

λ(K4 −K3) + δ(KY
4 −KY

3 ) = αK4 + βKY
4 − γ,

(70)

we can identify the following equalities, associated with (68) and (69):

λK3 = δKY
3 = γ;

(λ− α)K4 + (δ − β)KY
4 = γ.

(71)

With these equalities, the strategy identified above sub-replicates this basket option:

g(x) + h(y) + xf(z)1z=y/x − [αx + βy − γ]+ =




0, if 0 < x ≤ K3 and 0 < y ≤ KY
3 for y

x
∈ [z1, z2] and αx + βy ≤ γ;

0, if 0 < x ≤ K2 and KY
3 < y ≤ KY

4 for y
x
≥ z2 and αx + βy ≥ γ;

0, if K3 < x ≤ K4 and 0 < y ≤ KY
2 for y

x
≤ z1 and αx + βy ≥ γ;

0, if x > K4 and y > KY
4 for y

x
∈ [z1, z2];

< 0, otherwise.

(72)

Note that since there always exit the strikes Ki and KY
i (i = 1, 2, 3) from the construction

above, these strikes then determine the strikes z1 and z2 from the condition (68). As a result,

the strikes K4 and KY
4 are also obtained from that condition. Hence, all the relevant strikes

are determined once the strikes Ki and KY
i (i = 1, 2, 3) are chosen. This further implies that a

dominated trading strategy identified above always exists. Moreover, the strategies identified in

(17) can be viewed as the particular cases with the zero holdings of the X-denominated options

on the Y for z1 → 0 and z2 →∞.

Therefore, the lower valuation bounds on the basket option are attained as follows:

max
λ,δ,z1,z2,Ki,K

y
i ,i=1,2,3,4

∫

R+
(λ(x−K3)

+ + (α− λ)(x−K4)
+)πX(x)dx

+

∫

R+
(δ(y −KY

3 )+ + (β − δ)(y −KY
4 )+)πY (y)dy

+

∫

R+
((−β)(z1 − z)+ + (β − δ)(z − z2)

+)πZ(z)dz,

(73)
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s.t.

1)βz1 = λ− α; (δ − β)z2 = α, for 0 ≤ z1 ≤ z2;

2)λ(K4 −K3) + δ(KY
4 −KY

3 ) = αK4 + βKY
4 − γ;

3)αK1 + βKY
3 = γ; αK3 + βKY

1 = γ;

4)λ ≥ α; δ ≥ β; 0 ≤ K1 ≤ K2 ≤ K3 ≤ K4.

According to the analysis above, this problem always has a feasible solution and it is bounded

above. Thus it must have a solution. Since the strategies identified in (17) are the special cases

of f(z) ≡ 0, it is equivalent to the case of K1
a → 0 and K1

b → 0 and thus the greatest lower

bound derived from this problem should not be cheaper than the bound attained in (17).

The rest of the proof is about the construction of the pricing function that supports the

greatest lower bound. When only dollar-denominated options are traded, a price function p is

attained and the strikes K̂1
a, K̂2

a, K̂1
b and K̂2

b are attained, as shown in the left panel of Figure 2.

Under this pricing function, the dollar-denominated options on the X and Y are priced correctly.

However, this function may be inconsistent with the prices of the X-denominated options on

the Y .

Given the pricing function p, we firstly pick up two positive numbers z1 =
K̂1

b

K̂2
a

and z2 =
K̂2

b

K̂1
a
.

Then one can draw the lines through these numbers to divide the space into three regions.

Furthermore, another four points are chosen in the way:

αK2
x + βK2

y = γ; K4
x =

K2
y

z1
; K4

y = z2K
2
x,

where K2
x ∈ (K̂1

a, K̂2
a). Following the first procedure in the proof of Proposition 4, one can con-

struct a pricing function p̂ that is consistent with dollar-denominated options. To be consistent

with cross-rate options, one follow the second procedure to construct a density function p∗ by

adjusting K2
x and K2

y .

Therefore, one can construct a pricing function p∗ by choosing a group of parameters

(z1, z2, K̂
1
a, K̂2

x, K̂2
a, K̂4

x):

p∗(x, y) =





≥ 0, if (x, y) ∈ (0, K̂2
a]× (0, z2K̂

1
a] such that y

x
∈ [ẑ1, ẑ2] and αx + βy ≤ γ;

≥ 0, if (x, y) ∈ (0, K̂2
x]× [z2K̂

1
a, z2K̂

2
x] such that αx + βy ≥ γ ;

≥ 0, if (x, y) ∈ [K̂2
a, K̂4

x]× (0, z1K̂
4
x] such that αx + βy ≥ γ ;

≥ 0, if (x, y) ∈ [K̂4
x,∞)× [z2K̂

2
x,∞) such that y

x
∈ [ẑ1, ẑ2];

0, otherwise.

Also, one can construct a dominated trading strategy, while the quantities of λ and δ are

determined in the first condition of the problem (73). With this pricing function, there is the

following relation:

Ep∗ [g
∗(x) + h∗(y) + xf∗(z)1z=y/x − [αx + βy − γ]+] = 0.

2) For a triplet (α, β, γ) ∈ R−3 , the analysis can be completed in the similar way. First of

all, four points from the X and four points from the Y :

0 < K1 < K2 < K3 < K4; 0 < KY
1 < KY

2 < KY
3 < KY

4 , (74)

so that

KY
1 = z1K3, K

Y
2 = z1K4, K

Y
3 = z2K1, K

Y
4 = z2K2, for 0 < z1 ≤ z2 < ∞ ,

αK1 + βKY
3 = γ; αK2 + βKY

2 = γ; αK3 + βKY
1 = γ.

(75)

Following the conditions in (20)

βz1 = −λ; δz2 = −α, for 0 < z1 ≤ z2 < ∞;

λ(K3 −K4) + δ(KY
3 −Ky

4 ) = αK3 + βKY
3 − γ,

(76)
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we can identify the following equalities, associated with (75) and (69):

(−α)(K3 −K2) + λ(K3 −K4) = 0;

(−β)(KY
3 −KY

2 ) + δ(KY
3 −KY

4 ) = 0.
(77)

With these equalities, the the strategy identified in (21) sub-replicates the basket option.

Following the same construction in Proposition 4, there exists a joint density that supports the

greatest lower valuation bound on this option.
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